Parasitology Research

, Volume 118, Issue 1, pp 325–333 | Cite as

Low occurrence of hemosporidian parasites in the Neotropic cormorant (Phalacrocorax brasilianus) in Chile

  • Rodrigues Pedro
  • Navarrete Claudio
  • Campos Elena
  • Verdugo Claudio
Protozoology - Original Paper


Hemosporidian parasites rarely infect aquatic birds. Few studies have been conducted in South America identifying some lineages of the genera Plasmodium, Leucocytozoon, and Haemoproteus, but none has been done in the Neotropic cormorant (Phalacrocorax brasilianus). This species is widely distributed through the American continent, from Southern USA to Tierra del Fuego, using a wide range of aquatic habitats. We molecularly studied the occurrence and diversity of hemosporidian lineages infecting individuals of Neotropic cormorant across a broad latitudinal gradient in Chile (Arica to Tierra del Fuego). As expected, a very low occurrence of individuals infected by Plasmodium sp. (4/123, 3.3%) and Leucocytozoon sp. (2/123, 1.6%) was detected. We found no evidence of Haemoproteus sp. We identified one lineage of Plasmodium (ZEMAC01) and one new lineage of Leucocytozoon (PHABRA01) infecting cormorants. Individuals infected by Plasmodium sp. were birds from only one site (i.e., Chillán), whereas Leucocytozoon sp. was found in one bird from Valdivia and another one from Tierra del Fuego. Our results expand the known range of hemosporidian parasite lineages in aquatic birds providing an essential baseline data that contribute to a better understanding of the geographic range of hemosporidian parasites infecting Phalacrocoracidae in South America.


Phalacrocorax brasilianus Hemoparasites Plasmodium Leucocytozoon Pathogens Parasite 



P. R. was supported by Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT 3150617) and C. V. was supported by Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT 11130305). We also thank the Wildlife Conservation Society, José Luis Bastias, Edgar Carcamo, Omar Jimenez, Nicolás Martin, Joana Micael, Miguel Millon, Rodrigo Munzenmayer, Felipe Pontigo, Roberto Rosas, and Pedro Alvarez for field and laboratory support. We thank two anonymous reviewers whose comments and suggestions helped improve this manuscript.

Compliance with ethical standards

The present study was conducted according to the animal welfare guidelines of the Bioethical Committee of the Universidad Austral de Chile and with permission 7597/2016 from the Servicio Agrícola y Ganadero (SAG) and permission 019/2015 from the Corporación Nacional Forestal (CONAF). All experiments comply with the current laws of the Republic of Chile.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

436_2018_6146_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 24 kb)


  1. Adlard RA, Peirce MA, Lederer R (2004) Blood parasites of birds from south-east Queensland. EMU 104:191–196CrossRefGoogle Scholar
  2. Adler PH, Currie DC, Wood DM (2004) The black flies (Simuliidae) of North America. Cornell University Press, New YorkGoogle Scholar
  3. Apanius V (1998) Stress and immune response. In: Møller AP, Milinski M, Slater PJB (eds) Stress and behavior. Academic Press, New York, pp 133–154CrossRefGoogle Scholar
  4. Arriero E, Møller AP (2008) Host ecology and life-history traits associated with blood parasite species richness in birds. J Evol Biol 21:1504–1513CrossRefGoogle Scholar
  5. Asghar M, Hasselquist D, Hansson B, Zehtindjiev P, Westerdahl H, Bensch S (2015) Hidden costs of infection: chronic malaria accelerates telomere degradation and senescence in wild birds. Science 347:436–438CrossRefGoogle Scholar
  6. Atkinson CT (2008) Haemoproteus. In: Atkinson CT, Thomas NJ, Hunter BC (eds) Parasitic diseases of wild birds. Wiley-Blackwell, Ames, pp 13–35CrossRefGoogle Scholar
  7. Atkinson CT, Dusek RJ, Woods KL, Iko WM (2000) Pathogenicity of avian malaria in experimentally-infected Hawaii Amakihi. J Wildl Dis 36:197–204CrossRefGoogle Scholar
  8. Barquete V, Bugoni L, Vooren CM (2008) Diet of Neotropic cormorant (Phalacrocorax brasilianus) in an estuarine environment. Mar Biol 153:431–443CrossRefGoogle Scholar
  9. Bastien M, Jaeger A, Le Corre M, Tortosa P, Lebarbenchon C (2014) Haemoproteus iwa in great frigatebirds (Fregata minor) in the islands of the Western Indian Ocean. PLoS One 9:e97185CrossRefGoogle Scholar
  10. Beadell JS, Gering E, Austin J, Dumbacher JP, Peirce MA, Pratt TK, Atkinson CT, Fleischer RC (2004) Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region. Mol Ecol 13:3829–3844CrossRefGoogle Scholar
  11. Bennett GF, Bishop MA, Peirce MA (1993) Checklist of the avian species of Plasmodium Marchiafava and Celli, 1885 (Apicomplexa) and their distribution by avian family and Wallacean life zones. Syst Parasitol 26:171–179CrossRefGoogle Scholar
  12. Bennett GF, Pierce MA, Earlé RA (1994) An annotated checklist of the valid avian species of Haemoproteus, Leucocytozoon (Apicomplexa: Haemosporida) and Hepatozoon (Apicomplexa: Haemogredgarinidae). Syst Parasitol 29:61–73CrossRefGoogle Scholar
  13. Bensch S, Stjernman M, Hasselquist D, Ostman O, Hannson B, Westerdahl H, Pinheiro RT (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc Biol Sci 267:1583–1589CrossRefGoogle Scholar
  14. Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9:1353–1358CrossRefGoogle Scholar
  15. BirdLife International (2016) Phalacrocorax brasilianus. The IUCN Red List of Threatened Species 2016: e.T22696773A93585558Google Scholar
  16. Campioni L, Martínez-de la Puente J, Figuerola J, Granadeiro JP, Silva MC, Catry P (2018) Absence of haemosporidian parasite infections in the long-lived Cory’s shearwater: evidence from molecular analyses and review of the literature. Parasitol Res 117:323–329CrossRefGoogle Scholar
  17. Casaux RJ, di Prinzio CY, Bertolin ML, Tartara MA (2009) Diet of the Neotropic cormorant Phalacrocorax olivaceus at West Chubut, Patagonia, Argentina. Waterbirds 32:444–449CrossRefGoogle Scholar
  18. Cazorla CG, Spinelli GR (2007) A new species of Patagonian Stilobezzia (Acanthohelea) and a redescription of S. (A.) nigerrima Ingram and Macfie (Diptera: Ceratopogonidae). Trans Am Entomol Soc 133:181–187CrossRefGoogle Scholar
  19. Cereceda P, Larrain H, Osses P, Farías M, Egaña I (2008) The climate of the coast and fog zone in the Tarapacá Region, Atacama Desert, Chile. Atmos Res 87:301–311CrossRefGoogle Scholar
  20. Chagas CR, Guimarães LO, Monteiro EF et al (2016) Hemosporidian parasites of free-living birds in the São Paulo Zoo, Brazil. Parasitol Res 115:1443–1452CrossRefGoogle Scholar
  21. Clark NJ, Clegg SM, Lima MR (2014) A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): new insights from molecular data. Int J Parasitol 44:329–338CrossRefGoogle Scholar
  22. Coscarón S, Coscarón-Arias CL (1995) Distribution of Neotropical Simuliidae (Insecta-Diptera) and its areas of endemism. Rev Acad Colomb Cienc 19:717–732Google Scholar
  23. Currie DC, Adler PH (2008) Global diversity of black flies (Diptera: Simuliidae) in freshwater. Hydrobiol 595:469–475CrossRefGoogle Scholar
  24. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772CrossRefGoogle Scholar
  25. Dawson RD, Bortolotti GR (2000) Effects of hematozoan parasites on condition and return rates of American kestrels. Auk 117:373–380CrossRefGoogle Scholar
  26. Engström H, Dufva R, Olsson G (2000) Absence of haematozoa and ectoparasites in a highly sexually ornamented species, the crested auklet. Waterbirds 23:486–488CrossRefGoogle Scholar
  27. Ferraguti M, Martínez-de la Puente J, Muñoz J, Roiz D, Ruiz S, Soriguer R, Figuerola J (2013) Avian Plasmodium in Culex and Ochlerotatus mosquitoes from southern Spain: effects of season and host-feeding source on parasite dynamics. PLoS One 8:e66238CrossRefGoogle Scholar
  28. Figuerola J (1999) Effects of salinity on rates of infestation of waterbirds by haematozoa. Ecography 22:681–685CrossRefGoogle Scholar
  29. Forrester DJ, Greiner EC, McFarlane RW (1977) Blood parasites of some columbiform and passeriform birds from Chile. J Wildl Dis 13:94–96CrossRefGoogle Scholar
  30. Forrester DJ, Foster GW, Morrison JL (2001) Leucocytozoon toddi and Haemoproteus tinnunculi (Protozoa: Haemosporina) in the Chimango caracara (Milvago chimango) in southern Chile. Mem Inst Osvaldo Cruz 96:1023–1024CrossRefGoogle Scholar
  31. Frederiksen M, Lebreton J, Bregnballe T (2001) The interplay between culling and density-dependence in the great cormorant: a modeling approach. J Appl Ecol 38:617–627CrossRefGoogle Scholar
  32. Fuentes-Castillo D, Cicchino A, Mironov S, Moreno L, Landaeta-Aqueveque C, Barrientos C, González-Acuña D (2016) Ectoparasites of the black-chinned siskin Spinus barbatus (Passeriformes: Fringillidae) in Chile. Rev Bras Parasitol Vet 25:476–483CrossRefGoogle Scholar
  33. Garamszegi LZ (2010) The sensitivity of microscopy and PCR-based detection methods affecting estimates of prevalence of blood parasites in birds. J Parasitol 96:1197–1203CrossRefGoogle Scholar
  34. González CR, Jercic MI, Muñoz L (2005) The mosquitoes from Chile (Diptera: Culicidae). Acta Ent Chilena 29:31–35Google Scholar
  35. González-Acuña D, Guglielmone A (2005) Ticks (Acari: Ixodoidea: Argasidae, Ixodidae) of Chile. Exp Appl Acarol 35:147–163CrossRefGoogle Scholar
  36. Ham-Dueñas JG, Chapa-Vargas L, Stracey CM, Huber-Sannwald (2017) Haemosporidian prevalence and parasitaemia in the black-throated sparrow (Amphispiza bilineata) in central-Mexican dryland habitats. Parasitol Res 116:2527–2537CrossRefGoogle Scholar
  37. Henry A (1993) Simuliidae de Chile: Lista de especies y su distribución geográfica (Díptera: Simuliidae). Acta Ent Chilena 18:89–96Google Scholar
  38. Inumaru M, Murata K, Sato Y (2017) Prevalence of avian haemosporidian among injured wild birds in Tokyo and environs, Japan. Int J Parasitol Parasites Wildl 6:299–309CrossRefGoogle Scholar
  39. Ishtiaq F, Gering E, Rappole JH, Rahmani AR, Jhala YV, Dove CJ, Milensky C, Olson SL, Peirce MA, Fleischer RC (2007) Prevalence and diversity of avian hematozoan parasites in Asia: a regional survey. J Wildl Dis 43:382–398CrossRefGoogle Scholar
  40. Jiménez E (2001) Biología reproductiva y alimentaria del cormorán yeco (Phalacrocorax brasilianus, Gmelin; 1789) en la colonia del Santuario de la Naturaleza del Ríos Cruces, Valdivia. Dissertation, Universidad Austral de ChileGoogle Scholar
  41. Jovani R, Tella JL, Forero MG, Bertellotti M, Blanco G, Ceballos O, Donázar JA (2001) Apparent absence of blood parasites in the Patagonian seabird community: is it related to marine environment? Waterbirds 24:430–433CrossRefGoogle Scholar
  42. Kalmbach E, Ramsay SC, Wendeln H, Becker PH (2001) A study of Neotropic cormorants in Central Chile: possible effects of El Nino. Waterbirds 24:345–351CrossRefGoogle Scholar
  43. Knowles SCL, Wood MJ, Sheldon BC (2010) Context-dependent effects of parental effort on malaria infection in a wild bird population, and their role in reproductive trade-offs. Oecologia 164:87–97CrossRefGoogle Scholar
  44. LaPointe DA, Goff ML, Atkinson CT (2005) Comparative susceptibility of introduced forest-dwelling mosquitoes in Hawaii to avian malaria, Plasmodium relictum. J Parasitol 91:843–849CrossRefGoogle Scholar
  45. Lee-Cruz L, Cunningham A, Martínez P, Cruz M, Goodman S, Hamer K (2016) Prevalence of Haemoproteus sp. in Galápagos blue-footed boobies: effects on health and reproduction. Parasitol Open 2:1–10. CrossRefGoogle Scholar
  46. Levin II, Parker PG (2013) Comparative host–parasite population genetic structures: obligate fly ectoparasites on Galapagos seabirds. Parasitology 140:1061–1010CrossRefGoogle Scholar
  47. Levin II, Valkiunas G, Santiago-Alarcon D, Cruz LL, Iezhova TA et al (2011) Hippoboscid-transmitted Haemoproteus parasites (Haemosporida) infect Galapagos Pelecaniform birds: evidence from molecular and morphological studies, with a description of Haemoproteus iwa. Int J Parasitol 41:1019–1027CrossRefGoogle Scholar
  48. Levin II, Adkesson MJ, Evans M, Rettke CK, Parker PG (2014) No evidence for Galapagos Plasmodium lineage arriving via Humboldt Current seabirds. Pac Conserv Biol 20:37–40CrossRefGoogle Scholar
  49. Mackerras MJ, Mackerras IM (1960) The haematozoa of Australian birds. Aust J Zool 8:226–260CrossRefGoogle Scholar
  50. Manimegalai K, Sukanya S (2014) Biology of the filarial vector, Culex quinquefasciatus (Diptera: Culicidae). Int J Curr Microbiol App Sci 3:718–724Google Scholar
  51. Martínez J, Martínez-de la Puente J, Herrero J, del Cerro S, Lobato E, Rivero-de Aguilar J, Vásquez RA, Merino S (2009) A restriction site to differentiate Plasmodium and Haemoproteus infections in birds: on the inefficiency of general primers for detection of mixed infections. Parasitology 136:713–722CrossRefGoogle Scholar
  52. Martínez J, Vásquez RA, Venegas C, Merino S (2015) Molecular characterisation of haemoparasites in forest birds from Robison Crusoe Island: is the austral trush a potential threat to endemic birds? Bird Conserv Int 25:139–152CrossRefGoogle Scholar
  53. Martínez-Abrain A, Esparza B, Oro D (2004) Lack of blood parasites in bird species: does absence of blood parasite vectors explain it all? Ardeola 5:225–232Google Scholar
  54. Marzal A (2012) Recent advances in studies on avian malaria parasites. In: Okwa O (ed) Malaria parasites. InTech Open, London, pp 135–158Google Scholar
  55. Mendes L, Piersma T, Lecoq M, Spaans B, Ricklefs RE (2005) Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos 109:396–404CrossRefGoogle Scholar
  56. Merino S, Minguez E (1998) Absence of hematozoa in a breeding colony of the storm petrel Hydrobates pelagicus. IBIS 140:180–181CrossRefGoogle Scholar
  57. Merino S, Potti J (1995) High prevalence of hematozoa in nestlings of a passerine species, the pied flycatcher (Ficedula hypoleuca). Auk 112:1041–1043CrossRefGoogle Scholar
  58. Merino S, Barbosa A, Moreno J, Potti J (1997) Absence of haematozoa in a wild chinstrap penguin Pygoscelis Antarctica population. Polar Biol 18:227–228CrossRefGoogle Scholar
  59. Merino S, Moreno J, Sanz JJ, Arriero E (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc Biol Sci 267:2507–2510CrossRefGoogle Scholar
  60. Merino S, Moreno J, Vásquez RA, Martínez J, Sánchez-Monsálvez I, Estades CF, Ippi S, Sabat P, Rozzi R, McGehee S (2008) Haematozoa in forest birds from southern Chile: latitudinal gradients in prevalence and parasite lineage richness. Austral Ecol 33:329–340CrossRefGoogle Scholar
  61. Merino S, Hennicke J, Martínez J, Ludynia K, Torres R, Work TM, Stroud S, Masello JF, Quillfeldt P (2012) Infection by Haemoproteus parasites in four species of frigatebirds and the description of a new species of Haemoproteus (Haemosporida: Haemoproteidae). J Parasitol 98:388–397CrossRefGoogle Scholar
  62. Moens MAJ, Valkiunas G, Paca A, Bonaccorso E, Aguirre N, Pérez-Tris J (2016) Parasite specialization in a unique habitat: hummingbirds as reservoirs of generalist blood parasites of Andean birds. J Anim Ecol 85:1234–1245CrossRefGoogle Scholar
  63. Outlaw DC, Ricklefs RE (2011) Rerooting the evolutionary tree of malaria parasites. PNAS 108:13183–13187CrossRefGoogle Scholar
  64. Padilla LR, Whiteman NK, Merkel J, Huyvaert KP, Parker PG (2006) Health assessment of seabirds on Isla Genovesa, Galápagos Island. Ornithol Monogr 60:86–97CrossRefGoogle Scholar
  65. Parsons NJ, Peirce MA, Strauss V (2010) New species of haematozoa in Phalacrocoracidae and Stercorariidae in South Africa. Ostrich 81:103–108CrossRefGoogle Scholar
  66. Parsons NJ, Voogt NM, Schaefer AM, Peirce MA, Vanstreels RET (2017) Occurrence of blood parasites in seabirds for rehabilitation in the Western Cape, South Africa, 2001–2013. Vet Parasitol 233:52–61CrossRefGoogle Scholar
  67. Peirce MA (2005) A checklist of the valid avian species of Babesia (Apicomplexa: Piroplasmorida), Haemoproteus, Leucocytozoon (Apicomplexa: Haemosporida), and Hepatozoon (Apicomplexa: Haemogregarinidae). J Nat Hist 39:3621–3632CrossRefGoogle Scholar
  68. Peirce MA, Brooke M (1993) Failure to detect blood parasites in seabirds from the Pitcairn Islands. Seabird 15:72–74Google Scholar
  69. Pérez-Rodríguez A, Ramírez Á, Richardson DS, Pérez-Tris J (2013) Evolution of parasite island syndromes without long-term host population isolation: parasite dynamics in Macaronesian blackcaps Sylvia atricapilla. Glob Ecol Biogeogr 22:1272–1281CrossRefGoogle Scholar
  70. Perkins SL, Schall J (2002) A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. J Parasitol 88:972–978Google Scholar
  71. Piersma T (1997) Do global patterns of habitat use and migration strategies co-evolve with relative investment in immunocompetence due to spatial variation in parasites pressure? Oikos 80:623–631CrossRefGoogle Scholar
  72. Quillfeldt P, Martínez J, Hennicke J, Ludynia K, Gladbach A, Masello JF, Riou S, Merino S (2010) Hemosporidian blood parasites in seabirds- a comparative genetic study of species from Antarctic to tropical habitats. Naturwissenschaften 97:809–817CrossRefGoogle Scholar
  73. Quillfeldt P, Arriero E, Martínez J, Masello JF, Merino S (2011) Prevalence of blood parasites in seabirds – a review. Front Zool 8:26CrossRefGoogle Scholar
  74. Quillfeldt P, Martínez J, Bugoni L, Mancini P, Merino S (2014) Blood parasites in noddies and boobies from Brazilian offshore islands – differences between species and influence of nesting habitat. Parasitology 141:399–410CrossRefGoogle Scholar
  75. Quintana F, Yorio P, Borboroglu PG (2002) Aspects of the breeding biology of the Neotropic cormorant Phalacrocorax olivaceus at Golfo San Jorge, Argentina. Mar Ornithol 30:25–29Google Scholar
  76. Ricklefs RE, Fallon SM, Bermingham E (2004) Evolutionary relationships, cospeciation, and host switching in avian malaria parasites. Syst Biol 53:111–119CrossRefGoogle Scholar
  77. Rodrigues P, Campos E, Micael J, Verdugo C (in press) Sex determination of Neotropic cormorant (Phalacrocorax brasilianus) by molecular sexing. Avian Biol ResGoogle Scholar
  78. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, M a S, Huelsenbeck JP (2012) Mrbayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefGoogle Scholar
  79. Sallaberry-Pincheira N, Gonzalez-Acuña D, Herrera-Tello Y, Dantas GPM, Luna-Jorquera G, Frere E, Valdés-Velasquez A, Simeone A, Vianna J (2015) Molecular epidemiology of avian malaria in wild breeding colonies of Humboldt and Magellanic penguins in South America. EcoHealth 12:267–277CrossRefGoogle Scholar
  80. Seimon TA, Gilbert M, Neabore S, Hollinger C, Tomaszewicz A, Newton A, Chang T, McAloose D (2016) Avian haemosporidian parasite lineages in four species of free-ranging migratory waterbirds from Mongolia, 2008. J Wildl Dis 52:682–687CrossRefGoogle Scholar
  81. Sepulveda MS, Palma RL, Ochoa-Acuna H (1997) New records of feather lice from some seabirds in Chile. J Wildl Dis 33:371–372CrossRefGoogle Scholar
  82. Soares L, Escudero G, Penha V, Ricklefs RE (2016) Low prevalence of haemosporidian parasites in shorebirds. Ardea 104:129–141CrossRefGoogle Scholar
  83. Stotz DF, Fitzpatrick J, Parker T, Moskovits D (1996) Neotropical birds. In: Ecology and conservation. The University of Chicago Press, ChicagoGoogle Scholar
  84. Torres P, Ruiz E, Gesche W, Montefusco A (1991) Gastrointestinal helminths of fish-eating birds from Chiloe Island, Chile. J Wildl Dis 27:178–179CrossRefGoogle Scholar
  85. Torres P, Schlatter R, Montefusco A, Gesche W, Ruiz E, Contreras A (1993) Helminth parasites of piscivorous birds from lakes in the south of Chile. Mem Inst Oswaldo Cruz 88:341–343CrossRefGoogle Scholar
  86. Torres P, Valdivieso J, Schlatter R, Montefusco A, Revenga J, Marín F, Lamilla J, Ramallo G (2000) Infection by Contracaecum rudolphii (Nematoda: Anisakidae) in the Neotropic cormorant Phalacrocorax brasilianus, and fishes from the estuary of the Valdivia river, Chile. Stud Neotropical Fauna Environ 35:101–108CrossRefGoogle Scholar
  87. Torres P, Ortega J, Schlatter R (2005) Nematode parasites of the digestive tract in Neotropic cormorant chicks (Phalacrocorax brasilianus) from the River Cruces Ramsar site in southern Chile. Parasitol Res 97:103–107CrossRefGoogle Scholar
  88. Valera F, Carrillo CM, Barbosa A, Moreno E (2003) Low prevalence of haematozoa in trumpeter finches Bucanetes githagineus from South-Eastern Spain: additional support for a restricted distribution of blood parasites in arid lands. J Arid Environ 55:209–213CrossRefGoogle Scholar
  89. Valkiunas G (2005) Avian malaria parasites and other haemosporidia. CRC Press, Boca RatonGoogle Scholar
  90. Verdugo C, Pinto A, Ariyama N, Moroni M, Hernandez C (2019) Molecular identification of avian viruses in Neotropic cormorants (Phalacrocorax brasilianus). J Wildl Dis 51. doi:
  91. Waldenström J, Bensch S, Kiboi S, Hasselquist D, Ottosson U (2002) Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Ecol 11:1545–1554CrossRefGoogle Scholar
  92. Waldenström J, Bensch S, Hasselquist D, Ostman O (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90:191–194CrossRefGoogle Scholar
  93. Whiteman NK, Sánchez P, Merkel J, Klompen H, Parker PG (2006) Cryptic host specificity of an avian skin mite (Epidermoptidae) vectored by louse flies (Hippoboscidae) associated with two endemic Galápagos bird species. J Parasitol 92:1218–1228CrossRefGoogle Scholar
  94. Yorio P, Quintana F, Campagna C, Harris G (1994) Diversidad, abundancia y dinámica espacio-temporal de la colonia mixta de aves marinas en Punta León, Patagonia. Ornitol Neotrop 5:69–77Google Scholar
  95. Zuk M, McKean KA (1996) Sex differences in parasite infections: patterns and processes. Int J Parasitol 26:1009–1024CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rodrigues Pedro
    • 1
  • Navarrete Claudio
    • 1
  • Campos Elena
    • 1
  • Verdugo Claudio
    • 1
    • 2
  1. 1.Instituto de Patología Animal, Facultad de Ciencias VeterinariasUniversidad Austral de ChileValdiviaChile
  2. 2.Programa de Investigación Aplicada en Fauna Silvestre, Facultad de Ciencias VeterinariasUniversidad Austral de ChileValdiviaChile

Personalised recommendations