Parasitology Research

, Volume 118, Issue 2, pp 663–666 | Cite as

Evaluating the ontogenetic external morphology of an ectoparasitic Torix tukubana (Hirudinida: Glossiphoniidae), with records of its new host amphibian species

  • Chiaki KambayashiEmail author
  • Atsushi Kurabayashi
  • Takafumi Nakano
Genetics, Evolution, and Phylogeny - Short Communication


Torix is a leech genus containing freshwater proboscidate species, and several members of this taxon are ectoparasites specific to amphibians. Torix tukubana inhabits mountain streams in Japan, and only two frog species are known to be hosts. We collected this leech from two other amphibians, Onychodactylus japonicus (Japanese clawed salamander) and Rana ornativentris (montane brown frog), for the first time. This finding suggests that the host specificity of T. tukubana is low. The immature individuals of T. tukubana were also collected and identified based on DNA data. This is the first juvenile record of this species confirmed by its DNA barcode sequences. Several morphological characters known from large individuals and used as diagnostic characteristics in taxonomic keys were not observed in the juveniles, suggesting that these are ontogenetic traits.


Leech Onychodactylus japonicus Rana ornativentris cox1 Japan 



We are grateful to Junichi Naito and Norio Shimizu for their kindness in conducting the amphibian investigation. We also appreciate Nobuaki Furuno and Ryosuke Kakehashi for providing valuable advice on this study.


This study was financially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant numbers JP15J00720, JP17K20064, JP26291080, and JP18H02497.


  1. Boulenger GA (1879) Étude sur les grenouilles rousses Ranae temporariae et description d'espèces nouvelles ou méconnues. Bull Soc Zool Fr 4:158–193Google Scholar
  2. Dasch GA, Weiss E (1992) The genera Rickettsia, Rochalimaea, Ehlichia, Cowdaria, and Neorickettsia. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, vol 3. Springer-Verlag, New York, pp 2407–2470Google Scholar
  3. de Carle D, Oceguera-Figueroa A, Tessler M, Siddall ME, Kvist S (2017) Phylogenetic analysis of Placobdella (Hirudinea: Rhynchobdellida: Glossiphoniidae) with consideration of COI variation. Mol Phylogenet Evol 114:234–248. CrossRefGoogle Scholar
  4. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299Google Scholar
  5. Houttuyn M (1782) Het onderscheidt der Salamanderen van de Haagdissen in’t algemeen, en van de Gekkoos in’t byzone aangetoond. Verh Zeeuwsch Genootsch Wetensch Vlissingen 9:305–336Google Scholar
  6. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. CrossRefGoogle Scholar
  7. Kikuchi Y, Fukatsu T (2005) Rickettsia infection in natural leech populations. Microb Ecol 49:265–271. CrossRefGoogle Scholar
  8. Kikuchi Y, Sameshima S, Kitade O, Kojima J, Fukatsu T (2002) Novel clade of Rickettsia spp. from leeches. Appl Environ Microbiol 68:999–1004. CrossRefGoogle Scholar
  9. Nakano T (2012) A new species of Orobdella (Hirudinida, Arhynchobdellida, Gastrostomobdellidae) and redescription of O. kawakatsuorum from Hokkaido, Japan with the phylogenetic position of the new species. ZooKeys 169:9–30. CrossRefGoogle Scholar
  10. Oka A (1925a) Notices sur les Hirudinées d’Extreme Orient, I–IV. Annot Zool Jpn 10:311–326Google Scholar
  11. Oka A (1925b) Notices sur les Hirudinées d’Extrême Orient, V–VII. Annot Zool Jpn 10:327–335Google Scholar
  12. Oka A (1935) Description d’un nouveau genre d’Hirudinée de la famille des Glossiphonides, Oligoclepsis tukubana n. g. n. sp. Proc Imp Acad 11:66–68CrossRefGoogle Scholar
  13. Okada Y (1928) Notes on Japanese frogs. Annot Zool Jpn 11:269–277Google Scholar
  14. Sasaki A (2015) First record of Torix tagoi (Oka, 1925) in Yamanashi Prefecture, and Shizuoka Prefecture. Nat Hist Tokai Distr 8:5–8Google Scholar
  15. Sawyer RT (1986) Leech biology and behaviour. Clarendon Press, OxfordGoogle Scholar
  16. Siddall ME, Burreson EM (1998) Phylogeny of leeches (Hirudinea) based on mitochobdrial cytochrome c oxidase subunit. Mol Phylogenet Evol 9:156–162. CrossRefGoogle Scholar
  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. CrossRefGoogle Scholar
  18. Tessler M, de Carle D, Voiklis ML, Gresham OA, Neumann JS, Cios S, Siddall ME (2018) Worms that suck: phylogenetic analysis of Hirudinea solidifies the position of Acanthobdellida and necessitates the dissolution of Rhynchobdellida. Mol Phylogenet Evol 127:129–134.
  19. Werner F (1903) Über Reptilien und Batrachier aus Guatemala und China in der zoologischen Staats-Sammlung in München nebst einem Abhang über seltene Formen aus Anderer gebieten. Abh Math-Phys Kl K Bayer Akad Wiss 22:342–384Google Scholar
  20. Yoshida K (2009) [Occurrence record of Torix tukubana (Annelida: Hirudinea: Rhynchobdellida) collected from Mt. Tenzan (Kyuragi-machi, Karatsu-shi, Saga Prefecture)]. Saga Nat Stud 15:47Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Amphibian Research CenterHiroshima UniversityHiroshimaJapan
  2. 2.Department of Bio-ScienceNagahama Institute of Bio-Science and TechnologyShigaJapan
  3. 3.Unit for Environmental Sciences and ManagementNorth-West UniversityPotchefstroomSouth Africa
  4. 4.Department of Zoology, Graduate School of ScienceKyoto UniversityKyotoJapan

Personalised recommendations