Advertisement

Parasitology Research

, Volume 118, Issue 1, pp 1–27 | Cite as

Plasmodium genomics: an approach for learning about and ending human malaria

  • José Antonio Garrido-CardenasEmail author
  • Lilia González-Cerón
  • Francisco Manzano-Agugliaro
  • Concepción Mesa-Valle
Genetics, Evolution, and Phylogeny - Review

Abstract

Malaria causes high levels of morbidity and mortality in human beings worldwide. According to the World Health Organization (WHO), about half a million people die of this disease each year. Malaria is caused by six species of parasites belonging to the Plasmodium genus: P. falciparum, P. knowlesi, P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. Currently, malaria is being kept under control with varying levels of elimination success in different countries. The development of new molecular tools as well as the use of next-generation sequencing (NGS) technologies and novel bioinformatic approaches has improved our knowledge of malarial epidemiology, diagnosis, treatment, vaccine development, and surveillance strategies. In this work, the genetics and genomics of human malarias have been analyzed. Since the first P. falciparum genome was sequenced in 2002, various population-level genetic and genomic surveys, together with transcriptomic and proteomic studies, have shown the importance of molecular approaches in supporting malaria elimination.

Keywords

Malaria Plasmodium falciparum P. vivax Vaccine 

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. Abba K, Kirkham AJ, Olliaro PL, Deeks JJ, Donegan S, Garner P et al (2014) Rapid diagnostic tests for diagnosing uncomplicated non-falciparum or Plasmodium vivax malaria in endemic countries. Cochrane Database Syst Rev 12Google Scholar
  2. Acharya P, Garg M, Kumar P, Munjal A, Raja KD (2017) Host-parasite interactions in human malaria: clinical implications of basic research. Front Microbiol 8:889Google Scholar
  3. Aguiar JC, Bolton J, Wanga J, Sacci JB, Iriko H, Mazeika JK et al (2015) Discovery of novel Plasmodium falciparum pre-erythrocytic antigens for vaccine development. Silvie O, editor. PLoS One 10(8):e0136109Google Scholar
  4. Akinosoglou KA, Bushell ESC, Ukegbu CV, Schlegelmilch T, Cho JS, Redmond S et al (2015) Characterization of Plasmodium developmental transcriptomes in Anopheles gambiae midgut reveals novel regulators of malaria transmission. Cell Microbiol 17(2):254–268Google Scholar
  5. Al-Khedery B, Barnwell JW, Galinski MR (1999) Antigenic variation in malaria: a 3′ genomic alteration associated with the expression of a P. knowlesi variant antigen. Mol Cell 3(2):131–141Google Scholar
  6. Alonso PL, Brown G, Arevalo-Herrera M, Binka F, Chitnis C, Collins F, et al. (2011) A research agenda to underpin malaria eradication. PLoS Medicine. 8,Google Scholar
  7. Alterio V, Di Fiore A, D’Ambrosio K, Supuran CT, De Simone G (2012) Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 112:4421–4468Google Scholar
  8. de Alvarenga D, de Alvarenga DAM, de Pina-Costa A, de Sousa TN, Pissinatti A, Zalis MG et al (2015) Simian malaria in the Brazilian Atlantic forest: first description of natural infection of capuchin monkeys (Cebinae subfamily) by Plasmodium simium. Malar J 14(1):81Google Scholar
  9. de Alvarenga DAM, Culleton R, de Pina-Costa A, Rodrigues DF, Bianco C, Silva S et al (2018) An assay for the identification of Plasmodium simium infection for diagnosis of zoonotic malaria in the Brazilian Atlantic Forest. Sci Rep [Internet] 8(1):86 Available from: http://www.nature.com/articles/s41598-017-18216-x Google Scholar
  10. Amambua-Ngwa A, Tetteh KKA, Manske M, Gomez-Escobar N, Stewart LB, Deerhake ME, et al. (2012) Population genomic scan for candidate signatures of balancing selection to guide antigen characterization in malaria parasites. PLoS Genet 8(11)Google Scholar
  11. Amoah LE, Nuvor SV, Obboh EK, Acquah FK, Asare K, Singh SK et al (2017) Natural antibody responses to Plasmodium falciparum MSP3 and GLURP(R0) antigens are associated with low parasite densities in malaria patients living in the central region of Ghana. Parasites Vectors 10(1):1–9Google Scholar
  12. Ansari HR, Templeton TJ, Subudhi AK, Ramaprasad A, Tang J, Lu F et al (2016) Genome-scale comparison of expanded gene families in Plasmodium ovale wallikeri and Plasmodium ovale curtisi with Plasmodium malariae and with other Plasmodium species. Int J Parasitol 46(11):685–696Google Scholar
  13. Araújo MS, Messias MR, Figueiró MR, Gil LHS, Probst CM, Vidal NM et al (2013) Natural Plasmodium infection in monkeys in the state of Rondônia (Brazilian Western Amazon). Malar J 12(1):180Google Scholar
  14. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N et al (2014) A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505(7481):50–55Google Scholar
  15. Arnott A, Barry AE, Reeder JC (2012) Understanding the population genetics of Plasmodium vivax is essential for malaria control and elimination. Malar J 11(1):14Google Scholar
  16. Arredondo SA, Cai M, Takayama Y, MacDonald NJ, Anderson DE, Aravind L et al (2012) Structure of the Plasmodium 6-cysteine s48/45 domain. Proc Natl Acad Sci [Internet] 109(17):6692–6697. Available from: http://www.pnas.org/content/109/17/6692.full. Accessed 14 Apr 2015
  17. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S et al (2014) Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med [Internet] 371(5):411–423.  https://doi.org/10.1056/NEJMoa1314981 Google Scholar
  18. Asih PBS, Marantina SS, Nababan R, Lobo NF, Rozi IE, Sumarto W, et al. (2015) Distribution of Plasmodium vivax pvdhfr and pvdhps alleles and their association with sulfadoxine-pyrimethamine treatment outcomes in Indonesia. Malar J 14(1)Google Scholar
  19. Assefa S, Lim C, Preston MD, Duffy CW, Nair MB, Adroub SA et al (2015) Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi. Proc Natl Acad Sci [Internet] 112(42):13027–13032 Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1509534112 Google Scholar
  20. Auburn S, Böhme U, Steinbiss S, Trimarsanto H, Hostetler J, Sanders M et al (2016) A new Plasmodium vivax reference sequence with improved assembly of the subtelomeres reveals an abundance of pir genes. Wellcome Open Res [Internet] 1:4 Available from: https://wellcomeopenresearch.org/articles/1-4/v1 Google Scholar
  21. Baird K (2015) Origins and implications of neglect of G6PD deficiency and primaquine toxicity in Plasmodium vivax malaria. Pathog Glob Health 109(3):93–106Google Scholar
  22. Bansal A, Molina-Cruz A, Brzostowski J, Mu J, Miller LH. Plasmodium falciparum calcium-dependent protein kinase 2 is critical for male gametocyte exflagellation but not essential for asexual proliferation. Sibley LD, editor. MBio 2017 Nov;8(5):e01656–e01617Google Scholar
  23. Barber BE, Rajahram GS, Grigg MJ, William T, Anstey NM (2017) World malaria report: time to acknowledge Plasmodium knowlesi malaria. Malar J 16(1):135Google Scholar
  24. Barillas-Mury C, Kumar S (2005) Plasmodium-mosquito interactions: a tale of dangerous liaisons. Cell Microbiol 7:1539–1545Google Scholar
  25. Barnadas C, Ratsimbasoa A, Tichit M, Bouchier C, Jahevitra M, Picot S et al (2008) Plasmodium vivax resistance to chloroquine in Madagascar: clinical efficacy and polymorphisms in pvmdr1 and pvcrt-o genes. Antimicrob Agents Chemother 52(12):4233–4240Google Scholar
  26. Bartoloni A, Zammarchi L (2012) Clinical aspects of uncomplicated and severe malaria. Mediterr J Hematol Infect Dis 4(1):e2012026Google Scholar
  27. Baton LA, Ranford-Cartwright LC (2005) Do malaria ookinete surface proteins P25 and P28 mediate parasite entry into mosquito midgut epithelial cells? Malaria Journal Vol. 4,Google Scholar
  28. Benavente ED, de Sessions PF, Moon RW, Grainger M, Holder AA, Blackman MJ, et al. (2017a) A reference genome and methylome for the Plasmodium knowlesi A1-H.1 line. International Journal for Parasitology.Google Scholar
  29. Benavente ED, Ward Z, Chan W, Mohareb FR, Sutherland CJ, Roper C, et al. (2017b) Genomic variation in Plasmodium vivax malaria reveals regions under selective pressure. PLoS One 12(5)Google Scholar
  30. Bennink S, Kiesow MJ, Pradel G (2016) The development of malaria parasites in the mosquito midgut. Cell Microbiol 18:905–918Google Scholar
  31. Bergmann-Leitner ES, Li Q, Caridha D, O’Neil MT, Ockenhouse CF, Hickman M et al (2014) Protective immune mechanisms against pre-erythrocytic forms of Plasmodium berghei depend on the target antigen. Trials Vaccinol 3(1):6–10Google Scholar
  32. Bernabeu M, Lopez FJ, Ferrer M, Martin-Jaular L, Razaname A, Corradin G et al (2012) Functional analysis of Plasmodium vivax VIR proteins reveals different subcellular localizations and cytoadherence to the ICAM-1 endothelial receptor. Cell Microbiol 14(3):386–400Google Scholar
  33. Bousema T, Okell L, Felger I, Drakeley C (2014) Asymptomatic malaria infections: detectability, transmissibility and public health relevance. Nat Rev Microbiol 12(12):833–840Google Scholar
  34. Brasil P, Zalis MG, de Pina-Costa A, Siqueira AM, Júnior CB, Silva S, et al. ( 2017) Outbreak of human malaria caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: a molecular epidemiological investigation. Lancet Glob HealthGoogle Scholar
  35. Britton S, Cheng Q, McCarthy JS (2016) Novel molecular diagnostic tools for malaria elimination: a review of options from the point of view of high-throughput and applicability in resource limited settings. Malaria Journal Vol. 15Google Scholar
  36. Brugat T, Reid AJ, Lin J, Cunningham D, Tumwine I, Kushinga G et al (2017) Antibody-independent mechanisms regulate the establishment of chronic Plasmodium infection. Nat Microbiol [Internet] 2:16276 Available from: http://www.nature.com/articles/nmicrobiol2016276 Google Scholar
  37. de Bruin D, Lanzer M, Ravetch J V. The polymorphic subtelomeric regions of Plasmodium falciparum chromosomes contain arrays of repetitive sequence elements. Proc Natl Acad Sci U S A 1994;91(January):619–623Google Scholar
  38. Buery JC, Rodrigues PT, Natal L, Salla LC, Loss AC, Vicente CR et al (2017) Mitochondrial genome of Plasmodium vivax/simium detected in an endemic region for malaria in the Atlantic Forest of Espírito Santo state, Brazil: do mosquitoes, simians and humans harbour the same parasite? Malar J 16(1):437Google Scholar
  39. Burrows J (2015) Microbiology: malaria runs rings round artemisinin. Nature [Internet] 520(7549):628–630 Available from: http://www.nature.com/doifinder/10.1038/nature14387 Google Scholar
  40. Buscaglia CA, Coppens I, Hol WGJ, NUssenzweig V (2004) Sites of interaction between aldolase and thrombospondin-related anonymous protein in Plasmodium. Mol Biol Cell 15(April):3751–3737Google Scholar
  41. Bzik DJ, Li WB, Horii T, Inselburg J (1987) Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene. Proc Natl Acad Sci U S A [Internet] 84(23):8360–8364 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=299542&tool=pmcentrez&rendertype=abstract Google Scholar
  42. Calvo N, Morera J, Dolz G, et al (2015) Re-emergence of Plasmodium malariae in Costa Rica. Sci Postprint.  https://doi.org/10.14340/spp.2015.04A0004
  43. de Camargo TM, de Freitas EO, Gimenez AM, Lima LC, de Almeida CK, Françoso KS et al (2018) Prime-boost vaccination with recombinant protein and adenovirus-vector expressing Plasmodium vivax circumsporozoite protein (CSP) partially protects mice against Pb/Pv sporozoite challenge. Sci Rep [Internet] 8(1):1118 Available from: http://www.nature.com/articles/s41598-017-19063-6 Google Scholar
  44. Carlton J (2003) The Plasmodium vivax genome sequencing project. Trends in Parasitology 19:227–231Google Scholar
  45. Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E et al (2008) Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455(7214):757–763Google Scholar
  46. Carter R, Coulson A, Bhatti S, Taylor BJ, Elliott JF (1995) Predicted disulphide-bonded structures for three uniquely related proteins of Plasmodium falciparum, Pfs230, Pfs48/45 and pf12. Mol Biochem Parasitol 71(2):203–210Google Scholar
  47. Carter R, Graves PM, Creasey A, Byrne K, Read D, Alano P et al (1989) Plasmodium falciparum: an abundant stage-specific protein expressed during early gametocyte development. Exp Parasitol 69(1):140–149Google Scholar
  48. Carter R, Mendis KN (2002) Evolutionary and historical aspects of the burden of malaria evolutionary and historical aspects of the burden of malaria. Clin Microbiol Rev 15(4):564–594Google Scholar
  49. Ceesay SJ, Casals-Pascual C, Erskine J, Anya SE, Duah NO, Fulford AJ et al (2008) Changes in malaria indices between 1999 and 2007 in the Gambia: a retrospective analysis. Lancet 372(9649):1545–1554Google Scholar
  50. Chang H-H, Moss EL, Park DJ, Ndiaye D, Mboup S, Volkman SK et al (2013) Malaria life cycle intensifies both natural selection and random genetic drift. Proc Natl Acad Sci [Internet] 110(50):20129–20134 Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1319857110 Google Scholar
  51. Chaurio RA, Pacheco MA, Cornejo OE, Durrego E, Stanley CE, Castillo AI, et al. (2016) Evolution of the transmission-blocking vaccine candidates Pvs28 and Pvs25 in Plasmodium vivax: geographic differentiation and evidence of positive selection. PLoS Negl Trop Dis 10(6)Google Scholar
  52. Cheeseman IH, Miller BA, Nair S, Nkhoma S, Tan A, Tan JC, et al. (2012) A major genome region underlying artemisinin resistance in malaria. Science (80-). 335(6077):79–82Google Scholar
  53. Chen I, Clarke SE, Gosling R, Hamainza B, Killeen G, Magill A et al (2016) “Asymptomatic” malaria: a chronic and debilitating infection that should be treated. PLoS Med 13(1):1–11Google Scholar
  54. Chen Q, Fernandez V, Sundström A, Schlichtherle M, Datta S, Hagblom P et al (1998) Developmental selection of var gene expression in Plasmodium falciparum. Nature [Internet] 394(6691):392–395 Available from: http://www.nature.com/doifinder/10.1038/28660 Google Scholar
  55. Chen SB, Wang Y, Kassegne K, Xu B, Shen HM, Chen JH (2017) Whole-genome sequencing of a Plasmodium vivax clinical isolate exhibits geographical characteristics and high genetic variation in China-Myanmar border area. BMC Genomics 18(1)Google Scholar
  56. Cheng Q, Gatton ML, Barnwell J, Chiodini P, McCarthy J, Bell D, et al. (2014) Plasmodium falciparum parasites lacking histidine-rich protein 2 and 3: a review and recommendations for accurate reporting. Malar J 13(1)Google Scholar
  57. Chinchilla M, Guerrero OM, Gutiérrez G, Sánchez R (2006) Presencia de Plasmodium brasilianum (Apicomplexa, Plasmodidae) en el mono congo (Alouatta palliata, Primates: Cebidae) de Costa Rica: Importancia epidemiológica en relación con el ser humano. Parasitol Latinoam 61(3–4):192–196Google Scholar
  58. Cholera R, Brittain NJ, Gillrie MR, Lopera-Mesa TM, Diakité SAS, Arie T et al (2008) Impaired cytoadherence of Plasmodium falciparum-infected erythrocytes containing sickle hemoglobin. Proc Natl Acad Sci U S A 105(3):991–996Google Scholar
  59. Claessens A, Hamilton WL, Kekre M, Otto TD, Faizullabhoy A, Rayner JC, et al. (2014) Generation of antigenic diversity in Plasmodium falciparum by structured rearrangement of var genes during mitosis. PLoS Genet 10(12)Google Scholar
  60. Clyde DF, Most H, McCarthy VC, Vanderberg JP, Al E (1973) Immunization of man against sporozite-induced falciparum malaria. Am J Med Sci 266(3):169–177Google Scholar
  61. Cohen S, McGregor IA, Carrington S (1961) Gamma-globulin and acquired immunity to human malaria. Nature 192(4804):733–737Google Scholar
  62. Collins WE (2002) Nonhuman primate models. In: Malaria Methods and Protocols [Internet]. p. 77–84. Available from:  https://doi.org/10.1385/1-59259-271-6:77
  63. Collins WE, Jeffery GM (2007) Plasmodium malariae: parasite and disease. Clin Microbiol Rev 20:579–592Google Scholar
  64. Conway DJ (2015) Paths to a malaria vaccine illuminated by parasite genomics. Trends in Genetics 31:97–107Google Scholar
  65. Coppi A, Natarajan R, Pradel G, Bennett BL, James ER, Roggero MA et al (2011) The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. J Exp Med [Internet] 208(2):341–356 Available from: http://www.jem.org/lookup/doi/10.1084/jem.20101488 Google Scholar
  66. Costa DC, da Cunha VP, de Assis GMP, de Souza Junior JC, Hirano ZMB, de Arruda ME et al (2014) Plasmodium simium/Plasmodium vivax infections in southern brown howler monkeys from the Atlantic Forest. Mem Inst Oswaldo Cruz 109(5):641–653Google Scholar
  67. Cowell AN, Istvan ES, Lukens AK, Gomez-Lorenzo MG, Vanaerschot M, Sakata-Kato T, et al. (2018) Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science (80-). 359(6372):191–9Google Scholar
  68. Cowman AF, Karcz S, Galatis D, Culvenor JG (1991) A P-glycoprotein homologue of Plasmodium falciparum is localized on the digestive vacuole. J Cell Biol 113(5):1033–1042Google Scholar
  69. Cowman AF, Tonkin CJ, Tham W-H, Duraisingh MT (2017) The molecular basis of erythrocyte invasion by malaria parasites. Cell Host Microbe [Internet] 22(2):232–245 Available from: http://linkinghub.elsevier.com/retrieve/pii/S193131281730286X Google Scholar
  70. Cubi R, Vembar SS, Biton A, Franetich JF, Bordessoulles M, Sossau D, et al. (2017) Laser capture microdissection enables transcriptomic analysis of dividing and quiescent liver stages of Plasmodium relapsing species. Cell Microbiol 19(8)Google Scholar
  71. D’Alessandro HTU, Sorgho H, Valea I (2015) Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386(9988):31–45Google Scholar
  72. Datta D, Bansal GP, Gerloff DL, Ellefsen B, Hannaman D, Kumar N (2017) Immunogenicity and malaria transmission reducing potency of Pfs48/45 and Pfs25 encoded by DNA vaccines administered by intramuscular electroporation. Vaccine 35(2):264–272Google Scholar
  73. Deane LM, Deane LM (1992) Simian malaria in Brazil. Mem Inst Oswaldo Cruz 87(suppl 3):1–20Google Scholar
  74. Van Dijk MR, Janse CJ, Thompson J, Waters AP, Braks JAM, Dodemont HJ et al (2001) A central role for P48/45 in malaria parasite male gamete fertility. Cell 104(1):153–164Google Scholar
  75. Dinko B, Oguike MC, Larbi JA, Bousema T, Sutherland CJ (2013) Persistent detection of Plasmodium falciparum, P. malariae, P. ovale curtisi and P. ovale wallikeri after ACT treatment of asymptomatic Ghanaian school-children. Int J Parasitol Drugs Drug Resist 3:45–50Google Scholar
  76. Doolan DL, Apte SH, Proietti C (2014) Genome-based vaccine design: the promise for malaria and other infectious diseases. Int J Parasitol 44:901–913Google Scholar
  77. Draper SJ, Angov E, Horii T, Miller LH, Srinivasan P, Theisen M et al (2015) Recent advances in recombinant protein-based malaria vaccines. Vaccine 33(52):7433–7443Google Scholar
  78. Ejigiri I, Sinnis P (2009) Plasmodium sporozoite-host interactions from the dermis to the hepatocyte. Curr Opin Microbiol 12:401–407Google Scholar
  79. Eldering M, Bompard A, Miura K, Stone W, Morlais I, Cohuet A, et al. (2017) Comparative assessment of An. gambiae and An. stephensi mosquitoes to determine transmission-reducing activity of antibodies against P. falciparum sexual stage antigens. Parasites Vectors 10(1)Google Scholar
  80. Espinosa DA, Vega-Rodriguez J, Flores-Garcia Y, Noe AR, Muñoz C, Coleman R et al (2017) The Plasmodium falciparum cell-traversal protein for ookinetes and sporozoites as a candidate for preerythrocytic and transmission-blocking vaccines. Infect Immun [Internet] 85(2):1–10 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5278177/pdf/e00498-16.pdf Google Scholar
  81. Fançony C, Gamboa D, Sebastião Y, Hallett R, Sutherland C, Sousa-Figueiredo JC et al (2012) Various pfcrt and pfmdr1 genotypes of Plasmodium falciparum cocirculate with P. malariae, P. ovale spp., and P. vivax in northern Angola. Antimicrob Agents Chemother 56(10):5271–5277Google Scholar
  82. Fernández-Becerra C, Pinazo M, González A, Alonso PL, del Portillo HA, Gascón J (2009) Increased expression levels of the pvcrt-o and pvmdr1 genes in a patient with severe Plasmodium vivax malaria. Malar J 8(1):55Google Scholar
  83. Fernandez-Becerra C, Yamamoto MM, Vêncio RZN, Lacerda M, Rosanas-Urgell A, del Portillo HA (2009) Plasmodium vivax and the importance of the subtelomeric multigene vir superfamily. Trends in Parasitology 25:44–51Google Scholar
  84. Figueiredo MAP, Di Santi SM, Manrique WG, André MR, Machado RZ (2017) Identification of Plasmodium spp. in Neotropical primates of Maranhense Amazon in Northeast Brazil. PLoS One 12(8):1–14Google Scholar
  85. Filipe JAN, Riley EM, Drakeley CJ, Sutherland CJ, Ghani AC (2007) Determination of the processes driving the acquisition of immunity to malaria using a mathematical transmission model. PLoS Comput Biol 3(12):e255Google Scholar
  86. Flick K, var genes Chen Q (2004) PfEMP1 and the human host. Mol Biochem Parasitol 134:3–9Google Scholar
  87. Fonager J, Cunningham D, Jarra W, Koernig S, Henneman AA, Langhorne J et al (2007) Transcription and alternative splicing in the yir multigene family of the malaria parasite Plasmodium y. yoelii: identification of motifs suggesting epigenetic and post-transcriptional control of RNA expression. Mol Biochem Parasitol 156(1):1–11Google Scholar
  88. Formaglio P, Amino R (2015 Oct) Looking for blood. elife 4Google Scholar
  89. Foth BJ, McFadden GI (2003) The apicoplast: a plastid in plasmodium falciparum and other apicomplexan parasites. Int Rev Cytol 224:57–110Google Scholar
  90. Frech C, Chen N (2013) Variant surface antigens of malaria parasites: functional and evolutionary insights from comparative gene family classification and analysis. BMC Genomics 14(1)Google Scholar
  91. Fuentes-Ramírez A, Jiménez-Soto M, Castro R, Romero-Zuñiga JJ, Dolz G (2017) Molecular detection of Plasmodium malariae/Plasmodium brasilianum in non-human primates in captivity in Costa Rica. PLoS One 12(1):1–12Google Scholar
  92. Galinski MR, Lapp SA, Peterson MS, Ay F, Joyner CJ, Roch KG LE et al (2017) Plasmodium knowlesi: a superb in vivo nonhuman primate model of antigenic variation in malaria. Parasitology:1–16Google Scholar
  93. Garcia JE, Puentes A, Patarroyo ME (2006) Developmental biology of sporozoite-host interactions in Plasmodium falciparum malaria: implications for vaccine design. Clin Microbiol Rev 19:686–707Google Scholar
  94. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature [Internet] 419(6906):498–511 Available from: http://www.nature.com/doifinder/10.1038/nature01097 Google Scholar
  95. Garrido-Cardenas JA, Garcia-Maroto F, Alvarez-Bermejo JA, Manzano-Agugliaro F (2017) DNA sequencing sensors : an overview. Sensors (Basel) 17 (3)(588):1–15Google Scholar
  96. Gerloff DL, Creasey A, Maslau S, Carter R (2005) Structural models for the protein family characterized by gamete surface protein Pfs230 of Plasmodium falciparum. Proc Natl Acad Sci U S A [Internet] 102(38):13598–13603 Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16155126 Google Scholar
  97. Ghosh AK, Coppens I, Gardsvoll H, Ploug M, Jacobs-Lorena M (2011) Plasmodium ookinetes coopt mammalian plasminogen to invade the mosquito midgut. Proc Natl Acad Sci [Internet] 108(41):17153–17158 Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1103657108 Google Scholar
  98. Gillrie MR, Renaux B, Russell-Goldman E, Avril M, Brazier AJ, Mihara K et al (2016 Sep) Thrombin cleavage of Plasmodium falciparum erythrocyte membrane protein 1 inhibits cytoadherence. MBio 7(5):e01120–e01116Google Scholar
  99. Gilson PR, Crabb BS (2009) Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites. Int J Parasitol 39(1):91–96Google Scholar
  100. Ginouves M, Veron V, Musset L, Legrand E, Stefani A, Prevot G et al (2015) Frequency and distribution of mixed Plasmodium falciparum-vivax infections in French Guiana between 2000 and 2008. Malar J 14(1):446Google Scholar
  101. Golassa L, Baliraine FN, Enweji N, Erko B, Swedberg G, Aseffa A (2015) Microscopic and molecular evidence of the presence of asymptomatic Plasmodium falciparum and Plasmodium vivax infections in an area with low, seasonal and unstable malaria transmission in Ethiopia. BMC Infect Dis 15:310Google Scholar
  102. Gonçalves BP, Drakeley C, Bousema T (2016) Infectivity of microscopic and submicroscopic malaria parasite infections in areas of low malaria endemicity. J Infect Dis 213(9):1516–1517Google Scholar
  103. González-Cerón L, Alvarado-Delgado A, Martínez-Barnetche J, Rodríguez MH, Ovilla-Muñoz M, Pérez F et al (2010) Sequence variation of ookinete surface proteins Pvs25 and Pvs28 of Plasmodium vivax isolates from southern Mexico and their association to local anophelines infectivity. Infect Genet Evol 10(5):645–654Google Scholar
  104. Goodman CD, Siregar JE, Mollard V, Vega-Rodríguez J, Syafruddin D, Matsuoka H, et al. (2016) Parasites resistant to the antimalarial atovaquone fail to transmit by mosquitoes. Science (80-) 352(6283):349–53Google Scholar
  105. Gregson A, Plowe CV (2005) Mechanisms of resistance of malaria parasites to antifolates. Pharmacol Rev 57(1):117–145Google Scholar
  106. Grigg MJ, Snounou G (2017) Plasmodium simium: a Brazilian focus of anthropozoonotic vivax malaria? Lancet Glob Heal 17:961–962Google Scholar
  107. Guimarães LO, Bajay MM, Wunderlich G, Bueno MG, Röhe F, Catão-Dias JL et al (2012) The genetic diversity of Plasmodium malariae and Plasmodium brasilianum from human, simian and mosquito hosts in Brazil. Acta Trop 124(1):27–32Google Scholar
  108. Hall N, Karras M, Raine JD, Carlton JM, Kooij TWA, Berriman M, et al. (2005) A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science (80-) 307(5706):82–6Google Scholar
  109. Hamad AA, El Hassan IM, El Khalifa AA, Ahmed GI, Abdelrahim SA, Theander TG et al (2000) Chronic Plasmodium falciparum infections in an area of low intensity malaria transmission in the Sudan. Parasitology 120(5):447–456Google Scholar
  110. Hastings MD, Maguire JD, Bangs MJ, Zimmerman PA, Reeder JC, Baird JK et al (2005) Novel Plasmodium vivax dhfr alleles from the Indonesian archipelago and Papua New Guinea: association with pyrimethamine resistance determined by a Saccharomyces cerevisiae expression system. Antimicrob Agents Chemother 49:733–740Google Scholar
  111. Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW (2004) The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis 4(6):327–336Google Scholar
  112. Herdiana H, Cotter C, Coutrier FN, Zarlinda I, Zelman BW, Tirta YK et al (2016) Malaria risk factor assessment using active and passive surveillance data from Aceh Besar, Indonesia, a low endemic, malaria elimination setting with Plasmodium knowlesi, Plasmodium vivax, and Plasmodium falciparum. Malar J 15(1):468Google Scholar
  113. Hermsen CC, Verhage DF, Telgt DSC, Teelen K, Bousema JT, Roestenberg M et al (2007) Glutamate-rich protein (GLURP) induces antibodies that inhibit in vitro growth of Plasmodium falciparum in a phase 1 malaria vaccine trial. Vaccine 25(15):2930–2940Google Scholar
  114. Hikosaka K, Watanabe Y i, Kobayashi F, Waki S, Kita K, Tanabe K (2011) Highly conserved gene arrangement of the mitochondrial genomes of 23 Plasmodium species. Parasitol Int 60(2):175–180Google Scholar
  115. Hoffman SL, Goh LML, Luke TC, Schneider I, Le TP, Doolan DL et al (2002) Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J Infect Dis [Internet] 185(8):1155–1164 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11930326 Google Scholar
  116. Hoffman SL, Vekemans J, Richie TL, Duffy PE (2015) The march toward malaria vaccines. Am J Prev Med 49:S319–S333Google Scholar
  117. Horii T, Shirai H, Jie L, Ishii KJ, Palacpac NQ, Tougan T et al (2010) Evidences of protection against blood-stage infection of Plasmodium falciparum by the novel protein vaccine SE36. Parasitol Int 59(3):380–386Google Scholar
  118. Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE, Baird JK et al (2016) Global epidemiology of Plasmodium vivax. Am J Trop Med Hyg [Internet] 95(6 Suppl):15–34 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=5198891&tool=pmcentrez&rendertype=abstract Google Scholar
  119. Huang B, Huang S, Su XZ, Tong X, Yan J, Li H et al (2014) Molecular surveillance of pvdhfr, pvdhps, and pvmdr-1 mutations in Plasmodium vivax isolates from Yunnan and Anhui provinces of China. Malar J 13(1):1–10Google Scholar
  120. Hupalo DN, Luo Z, Melnikov A, Sutton PL, Rogov P, Escalante A et al (2016) Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax. Nat Genet 48(8):953–958Google Scholar
  121. Imwong M, Nakeesathit S, Day NP, White NJ (2011) A review of mixed malaria species infections in anopheline mosquitoes. Malar J 10(1):253Google Scholar
  122. Janssen CS, Barrett MP, Turner CMR, Phillips RS (2002) A large gene family for putative variant antigens shared by human and rodent malaria parasites. Proc Biol Sci [Internet] 269(1489):431–436 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1690903&tool=pmcentrez&rendertype=abstract Google Scholar
  123. Janssen CS, Phillips RS, Turner MR, Barret MP (2004) Plasmodium interspersed repeats: the major multigene superfamily of malaria parasites. Nucleic Acids Res 32(19):5712–5720Google Scholar
  124. Kagaya W, Miyazaki S, Yahata K, Ohta N, Kaneko O (2015) The cytoplasmic region of Plasmodium falciparum SURFIN4.2 is required for transport from Maurer’s clefts to the red blood cell surface. Trop Med Health [Internet] 43(4):265–272 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26865830%5Cn, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4689606 Google Scholar
  125. Kantele A, Jokiranta TS (2011) Review of cases with the emerging fifth human malaria parasite, Plasmodium knowlesi. Clin Infect Dis [Internet] 52(11):1356–1362 Available from: http://www.ncbi.nlm.nih.gov/pubmed/21596677 Google Scholar
  126. Kariu T, Ishino T, Yano K, Chinzei Y, Yuda M (2006) CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate hosts. Mol Microbiol 59(5):1369–1379Google Scholar
  127. de Koning-Ward TF, Gilson PR, Boddey JA, Rug M, Smith BJ, Papenfuss AT et al (2009) A newly discovered protein export machine in malaria parasites. Nature [Internet] 459(7249):945–949 Available from: http://www.nature.com/doifinder/10.1038/nature08104 Google Scholar
  128. Krungkrai J, Krungkrai SR, Supuran CT (2008) Carbonic anhydrase inhibitors: inhibition of Plasmodium falciparum carbonic anhydrase with aromatic/heterocyclic sulfonamides-in vitro and in vivo studies. Bioorganic Med Chem Lett 18(20):5466–5471Google Scholar
  129. Krungkrai SR, Krungkrai J (2011) Malaria parasite carbonic anhydrase: inhibition of aromatic/heterocyclic sulfonamides and its therapeutic potential. Asian Pac J Trop Biomed 1(3):233–242Google Scholar
  130. Kulangara C, Luedin S, Dietz O, Rusch S, Frank G, Mueller D, et al. (2012) Cell biological characterization of the malaria vaccine candidate trophozoite exported protein 1. PLoS One 7(10)Google Scholar
  131. Lal K, Prieto JH, Bromley E, Sanderson SJ, Yates JR, Wastling JM et al (2009) Characterisation of Plasmodium invasive organelles; an ookinete microneme proteome. Proteomics 9(5):1142–1151Google Scholar
  132. Lalremruata A, Jeyaraj S, Engleitner T, Joanny F, Lang A, Bélard S, et al. (2017) Species and genotype diversity of Plasmodium in malaria patients from Gabon analysed by next generation sequencing. Malar J 16(1)Google Scholar
  133. Lalremruata A, Magris M, Vivas-Martinez S, Koehler M, Esen M, Kempaiah P et al (2015) Natural infection of Plasmodium brasilianum in humans: man and monkey share quartan malaria parasites in the Venezuelan Amazon. EBioMedicine 2(9):1186–1192Google Scholar
  134. LAPP SA, GERALDO JA, CHIEN JT, AY F, PAKALA SB, BATUGEDARA G, et al. (2017) PacBio assembly of a Plasmodium knowlesi genome sequence with Hi-C correction and manual annotation of the SICAvar gene family. Parasitology:1–14Google Scholar
  135. Lapp SA, Korir CC, Galinski MR (2009) Redefining the expressed prototype SICAvar gene involved in plasmodium knowlesi antigenic variation. Malar J 8(1)Google Scholar
  136. Lasonder E, Rijpma SR, Van Schaijk BCL, Hoeijmakers WAM, Kensche PR, Gresnigt MS et al (2016) Integrated transcriptomic and proteomic analyses of P. falciparum gametocytes: molecular insight into sex-specific processes and translational repression. Nucleic Acids Res 44(13):6087–6101Google Scholar
  137. Lavstsen T, Salanti A, Jensen ATR, Arnot DE, Theander TG (2003) Sub-grouping of Plasmodium falciparum 3D7 var genes based on sequence analysis of coding and non-coding regions. Malar J [Internet] 2:27. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=222925&tool=pmcentrez&rendertype=abstract
  138. Lawton J, Brugat T, Yan YX, Reid AJ, Böhme U, Otto TD et al (2012) Characterization and gene expression analysis of the cir multi-gene family of Plasmodium chabaudi chabaudi (AS). BMC Genomics [Internet] 13(1):–125 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3384456&tool=pmcentrez&rendertype=abstract
  139. Lee KS, Divis PCS, Zakaria SK, Matusop A, Julin RA, Conway DJ, et al. (2011) Plasmodium knowlesi: reservoir hosts and tracking the emergence in humans and macaques. PLoS Pathog 7(4)Google Scholar
  140. Lee S, Nguyen MT (2015) Recent advances of vaccine adjuvants for infectious diseases. Immune Netw [Internet] 15(2):51 Available from: https://synapse.koreamed.org/DOIx.php?id=10.4110/in.2015.15.2.51 Google Scholar
  141. Lee SM, Wu CK, Plieskatt JL, Miura K, Hickey JM, King CR (2017) N-terminal Pfs230 domain produced in baculovirus as a biological active transmission-blocking vaccine candidate. Clin Vaccine Immunol 24(10)Google Scholar
  142. Li B, Sun Z, Li X, Li X, Wang H, Chen W et al (2017) Performance of pfHRP2 versus pLDH antigen rapid diagnostic tests for the detection of Plasmodium falciparum: a systematic review and meta-analysis. Arch Med Sci 13:541–549Google Scholar
  143. Li F, Bounkeua V, Pettersen K, Vinetz JM (2016) Plasmodium falciparum ookinete expression of plasmepsin VII and plasmepsin X. Malar J 15(1)Google Scholar
  144. Li F, Templeton TJ, Popov V, Comer JE, Tsuboi T, Torii M, et al. Plasmodium ookinete-secreted proteins secreted through a common micronemal pathway are targets of blocking malaria transmission. In: Journal of Biological Chemistry. 2004. p. 26635–44Google Scholar
  145. Lin CS, Uboldi AD, Epp C, Bujard H, Tsuboi T, Czabotar PE et al (2016) Multiple plasmodium falciparum merozoite surface protein 1 complexes mediate merozoite binding to human erythrocytes. J Biol Chem 291(14):7703–7715Google Scholar
  146. Lin JT, Saunders DL, Meshnick SR (2014 Apr) The role of submicroscopic parasitemia in malaria transmission: what is the evidence? Trends Parasitol 30(4):183–190Google Scholar
  147. Lindblade KA, Steinhardt L, Samuels A, Kachur SP, Slutsker L (2013) The silent threat: asymptomatic parasitemia and malaria transmission. Expert Rev Anti-Infect Ther 11(6):623–639Google Scholar
  148. López C, Saravia C, Gomez A, Hoebeke J, Patarroyo MA (2010) Mechanisms of genetically-based resistance to malaria. Gene 467(1–2):1–12Google Scholar
  149. Lubis IND, Wijaya H, Lubis M, Lubis CP, Divis PCS, Beshir KB et al (2017) Contribution of Plasmodium knowlesi to multispecies human malaria infections in north Sumatera, Indonesia. J Infect Dis 215(7):1148–1155Google Scholar
  150. Maeno Y (2017) Molecular epidemiology of mosquitoes for the transmission of forest malaria in south-central Vietnam. Tropical Med Health Vol. 45Google Scholar
  151. Magesa SM, Mdira KY, Babiker HA, Alifrangis M, Färnert A, Simonsen PE et al (2002 Nov) Diversity of Plasmodium falciparum clones infecting children living in a holoendemic area in north-eastern Tanzania. Acta Trop 84(2):83–92Google Scholar
  152. Maitland K. (2016) Severe malaria in African children—the need for continuing investment. Sev Malar African Child n engl j med 37525Google Scholar
  153. Makhtar Niang, Amy Kristine Bei, Kripa Gopal Madnani, Shaaretha Pelly, Selasi Dankwa, Usheer Kanjee, Karthigayan Gunalan, Anburaj Amaladoss KPY, Ndeye Sakha Bob, Benoit Malleret, , Manoj Duraisingh and PRP. The variant STEVOR protein of Plasmodium falciparum is a red cell binding protein important for merozoite invasion and rosetting. Cell Host Microbe 2014;16(1):81–93Google Scholar
  154. Malmberg M, Ferreira PE, Tarning J, Ursing J, Ngasala B, Björkman A et al (2013) Plasmodium falciparum drug resistance phenotype as assessed by patient antimalarial drug levels and its association with pfmdr1 polymorphisms. J Infect Dis 207(5):842–847Google Scholar
  155. Markus MB (2011) The hypnozoite concept, with particular reference to malaria. Parasitol Res 108:247–252Google Scholar
  156. Martin RE, Marchetti R V., Cowan AI, Howitt SM, Broer S, Kirk K (2009) Chloroquine transport via the malaria parasite’s chloroquine resistance transporter. Science (80- ) [Internet] 325(5948):1680–2. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1175667
  157. Mbengue A, Bhattacharjee S, Pandharkar T, Liu H, Estiu G, Stahelin RV et al (2015) A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature [Internet] 520(7549):683–687 Available from: http://www.nature.com/doifinder/10.1038/nature14412 Google Scholar
  158. McCollum AM, Basco LK, Tahar R, Udhayakumar V, Escalante AA (2008) Hitchhiking and selective sweeps of Plasmodium falciparum sulfadoxine and pyrimethamine resistance alleles in a population from central Africa. Antimicrob Agents Chemother 52(11):4089–4097Google Scholar
  159. Ménard R, Tavares J, Cockburn I, Markus M, Zavala F, Amino R (2013) Looking under the skin: the first steps in malarial infection and immunity. Nat Rev Microbiol 11(10):701–712Google Scholar
  160. Millar SB, Cox-Singh J (2015) Human infections with Plasmodium knowlesi-zoonotic malaria. Clin Microbiol Infect 21(7):640–648Google Scholar
  161. Mills JP, Diez-Silva M, Quinn DJ, Dao M, Lang MJ, Tan KSW et al (2007) Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc Natl Acad Sci [Internet] 104(22):9213–9217 Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0703433104 Google Scholar
  162. Miotto O, Amato R, Ashley EA, MacInnis B, Almagro-Garcia J, Amaratunga C et al (2015) Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet [Internet] 47(3):226–234 Available from: http://www.nature.com/doifinder/10.1038/ng.3189 Google Scholar
  163. Miura K (2016) Progress and prospects for blood-stage malaria vaccines. Expert Rev Vaccines 15:765–781Google Scholar
  164. Mobegi VA, Duffy CW, Amambua-Ngwa A, Loua KM, Laman E, Nwakanma DC et al (2014) Genome-wide analysis of selection on the malaria parasite plasmodium falciparum in West African populations of differing infection endemicity. Mol Biol Evol 31(6):1490–1499Google Scholar
  165. Modrzynska K, Pfander C, Chappell L, Yu L, Suarez C, Dundas K et al (2017) A knockout screen of ApiAP2 genes reveals networks of interacting transcriptional regulators controlling the Plasmodium life cycle. Cell Host Microbe 21(1):11–22Google Scholar
  166. Mohan, K., Stevenson MM (1998) Acquired immunity to asexual blood stages. . In: Sherman, I.W. (Ed.), Malaria: parasite biology, pathogenesis and protection. ASM press, Washington, D. CGoogle Scholar
  167. Molina-Cruz A, Canepa GE, Kamath N, Pavlovic NV, Mu J, Ramphul UN et al (2015) Plasmodium evasion of mosquito immunity and global malaria transmission: The lock-and-key theory. Proc Natl Acad Sci [Internet] 112(49):15178–15183 Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1520426112 Google Scholar
  168. Molina-Cruz A, Garver LS, Alabaster A, Bangiolo L, Haile A, Winikor J, et al. (2013) The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system. Science (80-) 340(6135):984–7Google Scholar
  169. Moorthy VS, Newman RD, Okwo-Bele J-M (2013) Malaria Vaccine Funders Group. Malaria Vaccine Technology Roadmap [Internet]. Lancet 382:1700–1. Available from: http://www.thelancet.com/journals/a/article/PIIS0140-6736(13)62238-2/fulltext%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/24239252
  170. Mordmüller B, Surat G, Lagler H, Chakravarty S, Ishizuka AS, Lalremruata A et al (2017) Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature 542(7642):445–449Google Scholar
  171. Moreira CK, Naissant B, Coppi A, Bennett BL, Aime E, Franke-Fayard B, et al. (2016) The plasmodium PHIST and RESA-like protein families of human and rodent malaria parasites. PLoS One 11(3)Google Scholar
  172. Moreira CK, Templeton TJ, Lavazec C, Hayward RE, Hobbs CV, Kroeze H et al (2008) The Plasmodium TRAP/MIC2 family member, TRAP-like protein (TLP), is involved in tissue traversal by sporozoites. Cell Microbiol 10(7):1505–1516Google Scholar
  173. Moreno M, Marinotti O, Krzywinski J, Tadei WP, James AA, Achee NL, et al. (2010) Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time. Malar J 9(1)Google Scholar
  174. Mueller I, Galinski MR, Tsuboi T, Arevalo-Herrera M, Collins WE, King CL (2013) Natural acquisition of immunity to Plasmodium vivax. In: Advances in parasitology. p. 77–131Google Scholar
  175. Mueller I, Shakri AR, Chitnis CE (2015) Development of vaccines for Plasmodium vivax malaria. Vaccine 33(52):7489–7495Google Scholar
  176. Mwanza S, Joshi S, Nambozi M, Chileshe J, Malunga P, Kabuya J-BB et al (2016) The return of chloroquine-susceptible Plasmodium falciparum malaria in Zambia. Malar J [Internet] 15(1):584 Available from: http://malariajournal.biomedcentral.com/articles/10.1186/s12936-016-1637-3 Google Scholar
  177. Naing C, Whittaker MA, Nyunt Wai V, Mak JW (2014) Is Plasmodium vivax malaria a severe malaria?: a systematic review and meta-analysis. PLoS Negl Trop Dis 8(8)Google Scholar
  178. Nyboer B, Heiss K, Mueller A-K, Ingmundson A (2017) The Plasmodium liver-stage parasitophorous vacuole: a front-line of communication between parasite and host. Int J Med Microbiol. (August):0–1Google Scholar
  179. O’Meara WP, Mwangi TW, Williams TN, McKenzie FE, Snow RW, Marsh K (2008) Relationship between exposure, clinical malaria, and age in an area of changing transmission intensity. Am J Trop Med Hyg 79(2):185–191Google Scholar
  180. Ohta T (2000) Evolution of gene families. Gene 259(1–2):45–52Google Scholar
  181. Olivieri A, Camarda G, Bertuccini L, Van De Vegte-Bolmer M, Luty AJF, Sauerwein R et al (2009) The Plasmodium falciparum protein Pfg27 is dispensable for gametocyte and gamete production, but contributes to cell integrity during gametocytogenesis. Mol Microbiol 73(2):180–193Google Scholar
  182. Olszewski KL, Morrisey JM, Wilinski D, Burns JM, Vaidya AB, Rabinowitz JD et al (2009) Host-parasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host Microbe 5(2):191–199Google Scholar
  183. Ouédraogo AL, Bousema T, Schneider P, de Vlas SJ, Ilboudo-Sanogo E, Cuzin-Ouattara N, et al. (2009) Substantial contribution of submicroscopical Plasmodium falciparum gametocyte carriage to the infectious reservoir in an area of seasonal transmission. Diemert DJ, editor. PLoS One. 4(12):e8410Google Scholar
  184. Pacheco MA, Matta NE, Valkiūnas G, Parker PG, Mello B, Stanley CE, et al. (2017) Mode and rate of evolution of haemosporidian mitochondrial genomes: timing the radiation of avian parasites. Mol Biol Evol [Internet]. Available from: http://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msx285/4596561
  185. Pain A, Böhme U, Berry AE, Mungall K, Finn RD, Jackson AP et al (2008) The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature [Internet] 455(7214):799–803 Available from: http://www.nature.com/doifinder/10.1038/nature07306 Google Scholar
  186. Pasini EM, Braks JA, Fonager J, Klop O, Aime E, Spaccapelo R et al (2013) Proteomic and genetic analyses demonstrate that Plasmodium berghei blood stages export a large and diverse repertoire of proteins. Mol Cell Proteomics [Internet] 12(2):426–448 Available from: http://www.mcponline.org/lookup/doi/10.1074/mcp.M112.021238 Google Scholar
  187. Pearson RD, Amato R, Auburn S, Miotto O, Almagro-Garcia J, Amaratunga C et al (2016) Genomic analysis of local variation and recent evolution in Plasmodium vivax. Nat Genet 48(8):959–964Google Scholar
  188. Peng K, Goh YS, Siau A, Franetich J-F, Chia WN, Ong ASM et al (2016) Breadth of humoral response and antigenic targets of sporozoite-inhibitory antibodies associated with sterile protection induced by controlled human malaria infection. Cell Microbiol 18(12):1739–1750Google Scholar
  189. Penny MA, Verity R, Bever CA, Sauboin C, Galactionova K, Flasche S et al (2016) Public health impact and cost-effectiveness of the RTS,S/AS01 malaria vaccine: a systematic comparison of predictions from four mathematical models. Lancet 387(10016):367–375Google Scholar
  190. Peterson DS, Walliker D, Wellems TE (1988) Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc Natl Acad Sci U S A 85(23):9114–9118Google Scholar
  191. Phillips MA, Burrows JN, Manyando C, Van Huijsduijnen RH, Van Voorhis WC, Wells TNC (2017) Malaria. Nat Rev Dis Prim 3Google Scholar
  192. Pirahmadi S, Zakeri S, Mehrizi AA, Djadid ND (2018) Analysis of genetic diversity and population structure of gene encoding cell-traversal protein for ookinetes and sporozoites (CelTOS) vaccine candidate antigen in global Plasmodium falciparum populations. Infect Genet Evol [Internet] 59(July 2017):113–125.  https://doi.org/10.1016/j.meegid.2018.01.023 Google Scholar
  193. Plowe CV, Kublin JG, Doumbo OKP (1998) falciparum dihydrofolate reductase and dihydropteroate synthase mutations: epidemiology and role in clinical resistance to antifolates. Drug Resistance Updates 1:389–396Google Scholar
  194. Pradel G (2007) Proteins of the malaria parasite sexual stages: expression, function and potential for transmission blocking strategies. Parasitology 134:1911–1929Google Scholar
  195. Del Prete S, Vullo D, Fisher GM, Andrews KT, Poulsen S-A, Capasso C et al (2014) Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum—the η-carbonic anhydrases. Bioorg Med Chem Lett [Internet] 24(18):4389–4396 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0960894X14008464 Google Scholar
  196. Price RN, Uhlemann AC, Brockman A, McGready R, Ashley E, Phaipun L et al (2004) Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364(9432):438–447Google Scholar
  197. Quispe AM, Pozo E, Guerrero E, Durand S, Baldeviano GC, Edgel KA et al (2014) Plasmodium vivax hospitalizations in a monoendemic malaria region: severe vivax malaria? Am J Trop Med Hyg. 91(1):11–17Google Scholar
  198. Ranford-Cartwright LC, Mwangi JM (2012) Analysis of malaria parasite phenotypes using experimental genetic crosses of Plasmodium falciparum. Int J Parasitol 42:529–534Google Scholar
  199. Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF (2000) Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403(6772):906–909Google Scholar
  200. Richards JS, Arumugam TU, Reiling L, Healer J, Hodder AN, Fowkes FJI et al (2013) Identification and prioritization of merozoite antigens as targets of protective human immunity to Plasmodium falciparum malaria for vaccine and biomarker development. J Immunol [Internet] 191(2):795–809 Available from: http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.1300778 Google Scholar
  201. Richards JS, MacDonald NJ, Eisen DP (2006) Limited polymorphism in Plasmodium falciparum ookinete surface antigen, von Willebrand factor A domain-related protein from clinical isolates. Malar J 5Google Scholar
  202. Richie TL, Billingsley PF, Sim BKL, James ER, Chakravarty S, Epstein JE et al (2015) Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines. Vaccine [Internet] 33(52):7452–7461 Available from:  https://doi.org/10.1016/j.vaccine.2015.09.096
  203. Rieckmann KH, Beaudoin RL, Cassells JS, Sell KW (1979) Use of attenuated sporozoites in the immunization of human volunteers against falciparum malaria. Bull World Health Organ 57(Suppl. 1):261–265Google Scholar
  204. Roca-Feltrer A, Carneiro I, Smith L, Schellenberg JRA, Greenwood B, Schellenberg D (2010) The age patterns of severe malaria syndromes in sub-Saharan Africa across a range of transmission intensities and seasonality settings. Malar J 9(1)Google Scholar
  205. Roepe PD (2009) Molecular and physiologic basis of quinoline drug resistance in Plasmodium falciparum malaria. Future Microbiol [Internet] 4(4):441–455 Available from: http://www.futuremedicine.com/doi/10.2217/fmb.09.15 Google Scholar
  206. Roestenberg M, Teirlinck AC, McCall MBB, Teelen K, Makamdop KN, Wiersma J et al (2011) Long-term protection against malaria after experimental sporozoite inoculation: an open-label follow-up study. Lancet 377(9779):1770–1776Google Scholar
  207. Rojo-marcos G. (2011) Infección por Plasmodium ovale: descripción de 16 casos y revisión del tema ˜ 29(3):204–8Google Scholar
  208. Rovira-Graells N, Gupta AP, Planet E, Crowley VM, Mok S, De Pouplana LR et al (2012) Transcriptional variation in the malaria parasite Plasmodium falciparum. Genome Res 22(5):925–938Google Scholar
  209. Rutledge GG, Böhme U, Sanders M, Reid AJ, Cotton JA, Maiga-Ascofare O et al (2017) Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution. Nature [Internet] 542(7639):101–104 Available from: http://www.nature.com/doifinder/10.1038/nature21038 Google Scholar
  210. Sá JM, Nomura T, Neves JDA, Baird JK, Wellems TE, Del Portillo HA (2005) Plasmodium vivax: allele variants of the mdr1 gene do not associate with chloroquine resistance among isolates from Brazil, Papua, and monkey-adapted strains. Exp Parasitol 109(4):256–259Google Scholar
  211. Sack B, Kappe SHI, Sather DN (2017) Towards functional antibody-based vaccines to prevent pre-erythrocytic malaria infection. Expert Rev Vaccines 16(5):403–414Google Scholar
  212. Saini E, Zeeshan M, Brady D, Pandey R, Kaiser G, Koreny L, et al. (2017) Photosensitized INA-labelled protein 1 (PhIL1) is novel component of the inner membrane complex and is required for Plasmodium parasite development. Sci Rep 7(1)Google Scholar
  213. Sargeant TJ, Marti M, Caler E, Carlton JM, Simpson K, Speed TP et al (2006) Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol [Internet] 7(2):R12 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16507167%5Cn, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1431722/pdf/gb-2006-7-2-r12.pdf Google Scholar
  214. Sastry M, Zhang B, Chen M, Joyce MG, Kong WP, Chuang GY, et al. (2017) Adjuvants and the vaccine response to the DS-Cav1-stabilized fusion glycoprotein of respiratory syncytial virus. PLoS One 12(10)Google Scholar
  215. Sattabongkot J, Tsuboi T, Hisaeda H, Tachibana M, Suwanabun N, Rungruang T et al (2003) Blocking of transmission to mosquitoes by antibody to Plasmodium vivax malaria vaccine candidates PVS25 and PVS28 despite antigenic polymorphism in field isolates. Am J Trop Med Hyg. 69(5):536–541Google Scholar
  216. Saxena AK, Wu Y, Garboczi DN (2007) Plasmodium P25 and P28 surface proteins: potential transmission-blocking vaccines. Eukaryotic Cell 6:1260–1265Google Scholar
  217. van Schaijk BCL, van Dijk MR, van de Vegte-Bolmer M, van Gemert GJ, van Dooren MW, Eksi S et al (2006) Pfs47, paralog of the male fertility factor Pfs48/45, is a female specific surface protein in Plasmodium falciparum. Mol Biochem Parasitol 149(2):216–222Google Scholar
  218. van Schaijk BCL, Ploemen IHJ, Annoura T, Vos MW, Foquet L, van Gemert G-J et al (2014) A genetically attenuated malaria vaccine candidate based on P. falciparum b9/slarp gene-deficient sporozoites. Elife 3:e03582Google Scholar
  219. Schneider P, Bousema JT, Gouagna LC, Otieno S, Van De Vegte-Bolmer M, Omar SA et al (2007) Submicroscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection. Am J Trop Med Hyg 76(3):470–474Google Scholar
  220. Scholz M, Fraunholz MJ (2008) A computational model of gene expression reveals early transcriptional events at the subtelomeric regions of the malaria parasite, Plasmodium falciparum. Genome Biol 9(5):R88Google Scholar
  221. Scuracchio P, Vieira SD, Dourado DA, Bueno LM, Colella R, Ramos-Sanchez EM et al (2011) Transfusion-transmitted malaria: case report of asymptomatic donor harboring Plasmodium malariae. Rev Inst Med Trop Sao Paulo 53(1):55–59Google Scholar
  222. Setiadi W, Sudoyo H, Trimarsanto H, Sihite BA, Saragih RJ, Juliawaty R, et al. (2016) A zoonotic human infection with simian malaria, Plasmodium knowlesi, in Central Kalimantan, Indonesia. Malar J 15(1)Google Scholar
  223. Seydel KB, Kampondeni SD, Valim C, Potchen MJ, Milner DA, Muwalo FW et al (2015) Brain swelling and death in children with cerebral malaria. N Engl J Med 372(12):1126–1137Google Scholar
  224. Siau A, Silvie O, Franetich JF, Yalaoui S, Marinach C, Hannoun L, et al. (2008) Temperature shift and host cell contact up-regulate sporozoite expression of Plasmodium falciparum genes involved in hepatocyte infection. PLoS Pathog 4(8)Google Scholar
  225. Sidhu ABS, Uhlemann A, Valderramos SG, Valderramos J, Krishna S, Fidock DA (2006) Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J Infect Dis [Internet] 194(4):528–535 Available from: https://academic.oup.com/jid/article-lookup/doi/10.1086/507115 Google Scholar
  226. Silvie O, Mota MM, Matuschewski K, Prudêncio M (2008) Interactions of the malaria parasite and its mammalian host. Curr Opin Microbiol 11:352–359Google Scholar
  227. Sinden RE (2015) The cell biology of malaria infection of mosquito: advances and opportunities. Cell Microbiol 17(4):451–466Google Scholar
  228. Singh B, Sung LK, Matusop A, Radhakrishnan A, Shamsul SS, Cox-Singh J et al (2004a) A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363(9414):1017–1024Google Scholar
  229. Singh B, Sung LK, Matusop A, Radhakrishnan A, Shamsul SSG, Cox-Singh J et al (2004b) A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363(9414):1017–1024Google Scholar
  230. Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, et al. (2012) A global map of dominant malaria vectors. Parasites Vectors 5(1)Google Scholar
  231. Siqueira AM, Mesones-Lapouble O, Marchesini P, de Sampaio V, S, Brasil P, Tauil PL et al (2016) Plasmodium vivax landscape in Brazil: scenario and challenges. Am J Trop Med Hyg 95(6 Suppl):87–96Google Scholar
  232. Sirima SB, Mordmüller B, Milligan P, Ngoa UA, Kironde F, Atuguba F et al (2016) A phase 2b randomized, controlled trial of the efficacy of the GMZ2 malaria vaccine in African children. Vaccine 34(38):4536–4542Google Scholar
  233. Skinner J, Huang CY, Waisberg M, Felgner PL, Doumbo OK, Ongoib A et al (2015) Plasmodium falciparum gametocyte-specific antibody profiling reveals boosting through natural infection and identifies potential markers of gametocyte exposure. Infect Immun 83(11):4229–4236Google Scholar
  234. Smith RC, Vega-Rodríguez J, Jacobs-Lorena M (2014) The Plasmodium bottleneck: malaria parasite losses in the mosquito vector. Mem Inst Oswaldo Cruz 109(5):644–661Google Scholar
  235. Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE et al (1993) High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61(2):315–320Google Scholar
  236. Srisutham S, Saralamba N, Sriprawat K, Mayxay M, Smithuis F, Nosten F et al (2018) Genetic diversity of three surface protein genes in Plasmodium malariae from three Asian countries. Malar J [Internet] 17(1):24.  https://doi.org/10.1186/s12936-018-2176-x Google Scholar
  237. Stephens JWW (1922) A new malaria parasite of man. Ann Trop Med Parasitol 16(1):383–388Google Scholar
  238. Sulistyaningsih E, Fitri LE, Löscher T, Berens-Riha N (2010 Jun) Diagnostic difficulties with Plasmodium knowlesi infection in humans. Emerg Infect Dis 16(6):1033–1034Google Scholar
  239. Sutherland CJ, Polley SD (2011) Genomic insights into the past, current and future evolution of human parasites of the genus Plasmodium. In: Genetics and Evolution of Infectious Diseases. p. 607–35Google Scholar
  240. Sutherland CJ, Tanomsing N, Nolder D, Oguike M, Jennison C, Pukrittayakamee S et al (2010) Two nonrecombining sympatric forms of the human malaria parasite Plasmodium ovale occur globally. J Infect Dis 201(10):1544–1550Google Scholar
  241. Ta TH, Hisam S, Lanza M, Jiram AI, Ismail N, Rubio JM (2014) First case of a naturally acquired human infection with Plasmodium cynomolgi. Malar J 13(1):68Google Scholar
  242. Tachibana M, Sato C, Otsuki H, Sattabongkot J, Kaneko O, Torii M et al (2012) Plasmodium vivax gametocyte protein Pvs230 is a transmission-blocking vaccine candidate. Vaccine 30(10):1807–1812Google Scholar
  243. Tachibana M, Suwanabun N, Kaneko O, Iriko H, Otsuki H, Sattabongkot J et al (2015) Plasmodium vivax gametocyte proteins, Pvs48/45 and Pvs47, induce transmission-reducing antibodies by DNA immunization. Vaccine 33(16):1901–1908Google Scholar
  244. Tachibana M, Tsuboi T, Kaneko O, Khuntirat B, Torii M (2002) Two types of Plasmodium ovale defined by SSU rRNA have distinct sequences for ookinete surface proteins. Mol Biochem Parasitol 122(2):223–226Google Scholar
  245. Tachibana M, Tsuboi T, Templeton TJ, Kaneko O, Torii M (2001) Presence of three distinct ookinete surface protein genes, Pos25, Pos28-1, and Pos28-2, in Plasmodium ovale. Mol Biochem Parasitol 113(2):341–344Google Scholar
  246. Talundzic E, Ravishankar S, Nayak V, Patel DS, Olsen C, Sheth M et al (2017) First full draft genome sequence of Plasmodium brasilianum. Genome Announc [Internet] 5(6):e01566–e01516 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28183758%5Cn, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5331498 Google Scholar
  247. Tangpukdee N, Duangdee C, Wilairatana P, Krudsood S (2009) Malaria diagnosis: a brief review. Korean J Parasitol [Internet] 47(2):93–102 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19488414%5Cn, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2688806 Google Scholar
  248. Tarr SJ, Moon RW, Hardege I, Osborne AR (2014) A conserved domain targets exported PHISTb family proteins to the periphery of Plasmodium infected erythrocytes. Mol Biochem Parasitol 196(1):29–40Google Scholar
  249. Templeton TJ, Kaslow DC, Fidock DA (2000) Developmental arrest of the human malaria parasite Plasmodium falciparum within the mosquito midgut via CTRP gene disruption. Mol Microbiol [Internet] 36(1):1–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/10760158 Google Scholar
  250. Tham W-H, Beeson JG, Rayner JC (2017) Plasmodium vivax vaccine research—we’ve only just begun. Int J Parasitol 47(2–3):111–118Google Scholar
  251. Thera MA, Doumbo OK, Coulibaly D, Laurens MB, Ouattara A, Kone AK et al (2011) A field trial to assess a blood-stage malaria vaccine. N Engl J Med [Internet] 365(11):1004–1013 Available from: http://www.ncbi.nlm.nih.gov/pubmed/21916638%5Cn, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3242358 Google Scholar
  252. Tolia NH, Enemark EJ, Sim BKL, Joshua-Tor L (2005 Jul) Structural basis for the EBA-175 erythrocyte invasion pathway of the malaria parasite Plasmodium falciparum. Cell 122(2):183–193Google Scholar
  253. Triglia T, Cowman AF (1994) Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. Proc Natl Acad Sci U S A [Internet] 91(15):7149–7153 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=44356&tool=pmcentrez&rendertype=abstract Google Scholar
  254. Trottein F, Triglia T, Cowman AF (1995) Molecular cloning of a gene from Plasmodium falciparum that codes for a protein sharing motifs found in adhesive molecules from mammals and Plasmodia. Mol Biochem Parasitol 74(2):129–141Google Scholar
  255. Tuju J, Kamuyu G, Murungi LM, Osier FHA (2017) Vaccine candidate discovery for the next generation of malaria vaccines. Immunology 152:195–206Google Scholar
  256. Tymoshenko S, Oppenheim RD, Soldati-Favre D, Hatzimanikatis V (2013) Functional genomics of plasmodium falciparum using metabolic modelling and analysis. Brief Funct Genomics 12(4):316–327Google Scholar
  257. Vaidya AB, Akella R, Suplick K (1989) Sequences similar to genes for two mitochondrial proteins and portions of ribosomal RNA in tandemly arrayed 6-kilobase-pair DNA of a malarial parasite. Mol Biochem Parasitol 35(2):97–107Google Scholar
  258. Vallejo AF, Martinez NL, Tobon A, Alger J, Lacerda M V., Kajava A V., et al. (2016) Global genetic diversity of the Plasmodium vivax transmission-blocking vaccine candidate Pvs48/45. Malar J 15(1)Google Scholar
  259. Venkatraman N, Anagnostou N, Bliss C, Bowyer G, Wright D, Lövgren-Bengtsson K et al (2017) Safety and immunogenicity of heterologous prime-boost immunization with viral-vectored malaria vaccines adjuvanted with matrix-M™. Vaccine 35(45):6208–6217Google Scholar
  260. Volz JC, Yap A, Sisquella X, Thompson JK, Lim NTY, Whitehead LW et al (2016) Essential role of the PfRh5/PfRipr/CyRPA complex during Plasmodium falciparum invasion of erythrocytes. Cell Host Microbe 20(1):60–71Google Scholar
  261. Voss TS, Healer J, Marty AJ, Duffy MF, Thompson JK, Beeson JG, et al. (2005) A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria. Nature [Internet]. Available from: http://www.nature.com/doifinder/10.1038/nature04407
  262. Wang B, Lu F, Cheng Y, Chen JH, Jeon HY, Ha KS et al (2015) Immunoprofiling of the tryptophan-rich antigen family in Plasmodium vivax. Infect Immun 83(8):3083–3095Google Scholar
  263. Wang P, Read M, Sims PF, Hyde JE (1997) Sulfadoxine resistance in the human malaria parasite Plasmodium falciparum is determined by mutations in dihydropteroate synthetase and an additional factor associated with folate utilization. Mol Microbiol 23(5):979–986Google Scholar
  264. Warncke JD, Vakonakis I, Beck H-P (2016) Plasmodium helical interspersed subtelomeric (PHIST) proteins, at the center of host cell remodeling. Microbiol Mol Biol Rev [Internet] 80(4):905–927.  https://doi.org/10.1128/MMBR.00014-16 Google Scholar
  265. Wassmer SC, Taylor TE, Rathod PK, Mishra SK, Mohanty S, Arevalo-Herrera M et al (2015) Investigating the pathogenesis of severe malaria: a multidisciplinary and cross-geographical approach. Am J Trop Med Hyg. 93:42–56Google Scholar
  266. Weiss GE, Gilson PR, Taechalertpaisarn T, Tham WH, de Jong NWM, Harvey KL, et al. (2015) Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytes. PLoS Pathog 11(2)Google Scholar
  267. White NJ (2008) Plasmodium knowlesi: the fifth human malaria parasite. Clin Infect Dis 46(2):172–173Google Scholar
  268. White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM (2014) Malaria. Lancet (London, England) 383(9918):723–35Google Scholar
  269. WHO (2014) Severe malaria section 1: epidemiology of severe falciparum malaria. Trop Med Int Heal 19 (suppl.:7–13Google Scholar
  270. WHO. Artemisinin and artemisinin-based combination therapy resistance. 2016;(October):1–8. Available from: http://apps.who.int/iris/bitstream/10665/208820/1/WHO_HTM_GMP_2016.5_eng.pdf?ua=1
  271. Wilby KJ, Lau TTY, Gilchrist SE, Ensom MHH. Mosquirix (RTS,S): a novel vaccine for the prevention of Plasmodium falciparum malaria. Ann Pharmacother [Internet] 2012;46(3):384–393. Available from: http://aop.sagepub.com/content/46/3/384.full
  272. William T, Rahman HA, Jelip J, Ibrahim MY, Menon J, Grigg MJ, et al. (2013) Increasing incidence of Plasmodium knowlesi malaria following control of P. falciparum and P. vivax malaria in Sabah, Malaysia. Baird JK, editor. PLoS Negl Trop Dis 7(1):e2026Google Scholar
  273. Williams TN (2012) Balancing act: haemoglobinopathies and malaria. Lancet Infect Dis 12(6):427–428Google Scholar
  274. Williamson KC, Keister DB, Muratova O, Kaslow DC (1995) Recombinant Pfs230, a Plasmodium falciparum gametocyte protein, induces antisera that reduce the infectivity of Plasmodium falciparum to mosquitoes. Mol Biochem Parasitol 75(1):33–42Google Scholar
  275. Winter DJ, Pacheco MA, Vallejo AF, Schwartz RS, Arevalo-Herrera M, Herrera S, et al. (2015) Whole genome sequencing of field isolates reveals extensive genetic diversity in Plasmodium vivax from Colombia. PLoS Negl Trop Dis 9(12)Google Scholar
  276. Winter G, Kawai S, Haeggström M, Kaneko O, von Euler A, Kawazu S et al (2005) SURFIN is a polymorphic antigen expressed on Plasmodium falciparum merozoites and infected erythrocytes. J Exp Med [Internet] 201(11):1853–1863 Available from: http://www.ncbi.nlm.nih.gov/pubmed/15939796%5Cn, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2213267 Google Scholar
  277. Wirth CC, Bennink S, Scheuermayer M, Fischer R, Pradel G (2015) Perforin-like protein PPLP4 is crucial for mosquito midgut infection by Plasmodium falciparum. Mol Biochem Parasitol 201(2):90–99Google Scholar
  278. World Health Organization W, WHO, World Health Organization W. World malaria report 2015. World Health. 2015;1–280Google Scholar
  279. Wykes MN, Horne-Debets JM, Leow CY, Karunarathne DS (2014) Malaria drives T cells to exhaustion. Front Microbiol Vol. 5Google Scholar
  280. Yam XY, Brugat T, Siau A, Lawton J, Wong DS, Farah A et al (2016) Characterization of the Plasmodium interspersed repeats (PIR) proteins of Plasmodium chabaudi indicates functional diversity. Sci Rep 6Google Scholar
  281. Yang ASP, Lopaticki S, O’Neill MT, Erickson SM, Douglas DN, Kneteman NM, et al. (2017) AMA1 and MAEBL are important for Plasmodium falciparum sporozoite infection of the liver. Cell Microbiol 19(9)Google Scholar
  282. Yusof R, Lau Y, Mahmud R, Fong M, Jelip J, Ngian H et al (2014) High proportion of knowlesi malaria in recent malaria cases in Malaysia. Malar J 13(1):168Google Scholar
  283. Zaw MT, Lin Z (2017) Two sympatric types of Plasmodium ovale and discrimination by molecular methods. J Microbiol Immunol Infect 50(5):559–564Google Scholar
  284. Zhang Q, Ma C, Oberli A, Zinz A, Engels S, Przyborski JM (2017) Proteomic analysis of exported chaperone/co-chaperone complexes of P. falciparum reveals an array of complex protein-protein interactions. Sci Rep;7Google Scholar
  285. Zimmerman PA, Mehlotra RK, Kasehagen LJ, Kazura JW (2004) Why do we need to know more about mixed Plasmodium species infections in humans? Trends Parasitol 20(9):440–447Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biology and GeologyUniversity of AlmeriaAlmeriaSpain
  2. 2.Regional Center for Public Health ResearchNational Institute of Public HealthTapachulaMexico
  3. 3.Department of EngineeringUniversity of AlmeriaAlmeriaSpain

Personalised recommendations