Advertisement

Parasitology Research

, Volume 118, Issue 1, pp 89–96 | Cite as

Frequency and genetic diversity of Echinococcus granulosus sensu stricto in sheep and cattle from the steppe region of Djelfa, Algeria

  • Abd Elkarim Laatamna
  • Dennis Ebi
  • Khadidja Brahimi
  • Khadidja Bediaf
  • Marion Wassermann
  • Karim Souttou
  • Thomas Romig
Original Paper

Abstract

Cystic echinococcosis (CE) of humans and animals is caused by various species of Echinococcus granulosus sensu lato. Of these, E. granulosus sensu stricto has the widest geographical distribution and is the most important agent of human cystic echinococcosis. Previous molecular studies showed that E. granulosus s.s. isolates from the Middle East and western Asia exhibit higher intraspecific diversity than those from other parts of the world, which led to hypotheses on the origin of the species in that region. However, various high-endemicity regions have not been sufficiently covered by such studies, including northern Africa as a well-known focus of this parasite. Here, we report data on the mitochondrial cox1 gene (1609bp) sequence diversity of E. granulosus s.s. from Algerian livestock. An abattoir survey of 1278 animals from the Algerian steppe region (Djelfa) resulted in CE prevalence of 13.9% in cattle (n = 266), 5.7% in sheep (n = 975), and 0% in goats (n = 37). All of 125 molecularly examined cyst isolates belonged to E. granulosus s.s. In total, 73 haplotypes were found, only five of which have been previously reported (from the Middle East and Australia). One haplotype sequence (EgAlg01X) was found to contain an insertion of three bases at the end of the gene. To the best of our knowledge, this has not been reported before for Echinococcus spp. Diversity values of our panel of Algerian samples were in the range of those that have been previously reported from the Middle East and far higher than those from elsewhere. This, together with the low number of shared haplotypes, indicates a more complex biogeographical history of this parasite than hitherto assumed.

Keywords

Echinococcus granulosus sensu stricto Haplotype cox1 Genetic diversity Steppe region Algeria 

Notes

Acknowledgements

The authors thank the responsible veterinarian at the Djelfa slaughterhouse for his support and participation during the sampling of material. The presence of insertion TGC within haplotype EgAlg01X was confirmed by Dr. Belgees Boufana at the Italian National Institute of Health, Department of Infectious Diseases, Rome, Italy.

Funding information

Parts of this work were financially supported by Deutsche Forschungsgemeinschaft (DFG), project CESSARi (Ro 3753/2-1, 3-1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

436_2018_6118_MOESM1_ESM.pdf (655 kb)
ESM 1 (PDF 655 kb)

References

  1. Alvarez Rojas CA, Romig T, Lightowlers MW (2014) Echinococcus granulosus sensu lato genotypes infecting humans – review of current knowledge. Int J Parasitol 44:9–18.  https://doi.org/10.1016/j.ijpara.2013.08.008 CrossRefGoogle Scholar
  2. Alvarez Rojas CA, Ebi D, Gauci CG, Scheerlinck JP, Wassermann M, Jenkins DJ, Lightowlers MW, Romig T (2016) Microdiversity of Echinococcus granulosus sensu stricto in Australia. Parasitology 143:1026–1033.  https://doi.org/10.1017/S0031182016000445 CrossRefGoogle Scholar
  3. Alvarez Rojas CA, Ebi D, Paredes R, Acosta-Jamett G, Urriola N, Roa JC, Manterola C, Cortes S, Romig T, Scheerlinck JP, Lightowlers MW (2017) High intraspecific variability of Echinococcus granulosus sensu stricto in Chile. Parasitol Int 66:112–115.  https://doi.org/10.1016/j.parint.2016.12.001 CrossRefGoogle Scholar
  4. Bardonnet K, Benchikh-Elfegoun MC, Bart JM, Harraga S, Hannache N, Haddad S, Dumon H, Vuitton DA, Piarroux R (2003) Cystic echinococcosis in Algeria: cattle act reservoirs of a sheep strain and may contribute to human contamination. Vet Parasitol 116:35–44.  https://doi.org/10.1016/S0304-4017(03)00255-3 CrossRefGoogle Scholar
  5. Benchikh-Elfegoun MC, Benakhla A, Bentounsi B, Bererhi H, Sfaksi A, Dumon H, Piarroux R (2008) Evaluation de l'infestation par Echinococcus granulosus des chiens par le test E.L.I.S.A. Sci Technol 27:15–22Google Scholar
  6. Bentounsi B, Meradi S, Ayachi A, Cabaret J (2009) Cestodes of untreated large stray dog populations in Algeria: a reservoir for herbivore and human parasitic diseases. Open Vet Sci J 3:64–67.  https://doi.org/10.2174/1874318809003010064 CrossRefGoogle Scholar
  7. Bowles J, Blair D, McManus DP (1992) Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol 54:165–173.  https://doi.org/10.1016/0166-6851(92)90109-W CrossRefGoogle Scholar
  8. Cardona GA, Carmena D (2013) A review of the global prevalence, molecular epidemiology and economics of cystic echinococcosis in production animals. Vet Parasitol 192:10–32.  https://doi.org/10.1016/j.vetpar.2012.09.027 CrossRefGoogle Scholar
  9. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659.  https://doi.org/10.1046/j.1365-294x.2000.01020.x CrossRefGoogle Scholar
  10. Dakkak A (2010) Echinococcosis/hydatidosis: a severe threat in Mediterranean countries. Vet Parasitol 174:2–11.  https://doi.org/10.1016/j.vetpar.2010.08.009 CrossRefGoogle Scholar
  11. Deplazes P, Rinaldi L, Alvarez Rojas CA, Torgerson PR, Harandi MF, Romig T, Antolova D, Schurer JM, Lahmar S, Cringoli G, Magambo J, Thompson RCA, Jenkins EJ (2017) Global distribution of alveolar and cystic echinococcosis. Adv Parasitol 95:315–493.  https://doi.org/10.1016/bs.apar.2016.11.001 CrossRefGoogle Scholar
  12. Gemmell MA (2000) Australasian contributions to an understanding of the epidemiology and control of hydatid disease caused by Echinococcus granulosus—past, present and future. Int J Parasitol 20:431–456.  https://doi.org/10.1016/0020-7519(90)90192-P CrossRefGoogle Scholar
  13. Gifford-Gonzalez D, Hanotte O (2011) Domesticating animals in Africa: implications of genetic and archaeological findings. J World Prehist 24:1–23.  https://doi.org/10.1007/s10963-010-9042-2 CrossRefGoogle Scholar
  14. Groeneveld LF, Lenstra JA, Eding H, Toro MA, Scherf B, Pilling D, Negrini R, Finlay EK, Jianlin H, Groeneveld E, Weigend S, The GLOBALDIV Consortium (2010) Genetic diversity in farm animals – a review. Anim Genet 41(Suppl. 1):6–31.  https://doi.org/10.1111/j.1365-2052.2010.02038.x CrossRefGoogle Scholar
  15. Hamrat K, Achour Y, Yacin G, Cozma V (2011a) Epidemiologic study of hydatidosis in the steppe regions of Djelfa, Algeria. Sci Parasitol 12:177–183Google Scholar
  16. Hamrat K, Achour Y, Benhousse A, Cozma V (2011b) Study of the prevalence of Echinococcus granulosus in the south of Algeria (as in the ADRAR region). Sci Parasitol 12:219–221Google Scholar
  17. Ito A, Dorjsuren T, Davaasuren A, Yanagida T, Sako Y, Nakaya K, Nakao M, Bat-Ochir OE, Ayushkhuu T, Bazarragchaa N, Gonchigsengee N, Li T, Agvaandaram G, Davaajav A, Boldbaatar C, Chuluunbaatar G (2014) Cystic echinococcoses in Mongolia: molecular identification, serology and risk factors. PLoS Negl Trop Dis 8:e2937.  https://doi.org/10.1371/journal.pntd.0002937 CrossRefGoogle Scholar
  18. Kinkar L, Laurimäe T, Simsek S, Balkaya I, Casulli A, Manfredi MT, Ponce-Gordo F, Varcasia A, Lavikainen A, González LM, Rehbein S, van der Giessen J, Sprong H, Saarma U (2016) High-resolution phylogeography of zoonotic tapeworm Echinococcus granulosus sensu stricto genotype G1 with an emphasis on its distribution in Turkey, Italy and Spain. Parasitology 143:1790–1801.  https://doi.org/10.1017/S0031182016001530 CrossRefGoogle Scholar
  19. Kinkar L, Laurimäe T, Sharbatkhori M, Mirhendi H, Kia EB, Ponce-Gordo F, Andresiuk V, Simsek S, Lavikainen A, Irshadullah M, Umhang G, Oudni-M'rad M, Acosta-Jamett G, Rehbein S, Saarma U (2017) New mitogenome and nuclear evidence on the phylogeny and taxonomy of the highly zoonotic tapeworm Echinococcus granulosus sensu stricto. Infect Genet Evol 52:52–58.  https://doi.org/10.1016/j.meegid.2017.04.023 CrossRefGoogle Scholar
  20. Kinkar L, Laurimäe T, Acosta-Jamett G, Andresiuk V, Balkaya I, Casulli A, Gasser RB, van der Giessen J, González LM, Haag KL, Zait H, Irshadullah M, Jabbar A, Jenkins DJ, Kia EB, Manfredi MT, Mirhendi H, M’rad S, Rostami-Nejad M, Oudni-M’rad M, Pierangeli NB, Ponce-Gordo F, Rehbein S, Sharbatkhori M, Simsek S, Soriano SV, Sprong H, Šnábel V, Umhang G, Varcasia A, Saarma U (2018) Global phylogeography and genetic diversity of the zoonotic tapeworm Echinococcus granulosus sensu stricto genotype G1. Int J Parasitol 48:729–742.  https://doi.org/10.1016/j.ijpara.2018.03.006 CrossRefGoogle Scholar
  21. Konyaev SV, Yanagida T, Ingovatova GM, Shoikhet YN, Nakao M, Sako Y, Bondarev AY, Ito A (2012) Molecular identification of human echinococcosis in the Altai region of Russia. Parasitol Int 61:711–714.  https://doi.org/10.1016/j.parint.2012.05.009 CrossRefGoogle Scholar
  22. Konyaev SV, Yanagida T, Nakao M, Ingovatova GM, Shoykhet YN, Bondarev AY, Odnokurtsev VA, Loskutova KS, Lukmanova GI, Dokuchaev NE, Spiridonov S, Alshinecky MV, Sivkova TN, Andreyanov ON, Abramov SA, Krivopalov AV, Karpenko SV, Lopatina NV, Dupal TA, Sako Y, Ito A (2013) Genetic diversity of Echinococcus spp. in Russia. Parasitology 140:1637–1647.  https://doi.org/10.1017/S0031182013001340 CrossRefGoogle Scholar
  23. Kouidri M, Benchaib-Khoudja F, Boulkaboul A, Selles M (2012) Prevalence, fertility and viability of cystic echinococcosis in sheep and cattle of Algeria. Bulgarian J Vet Med 15:191–197Google Scholar
  24. Kouidri M, Benchaib-Khoudja F, Boulkaboul A, Selles SMA (2013) Cystic echinococcosis in small ruminants in Tiaret (Algeria). Global Veterinaria 11:753–758.  https://doi.org/10.5829/idosi.gv.2013.11.6.76139 Google Scholar
  25. Laurimäe T, Kinkar L, Andresiuk V, Haag KL, Ponce-Gordo F, Acosta-Jamett G, Garate T, Gonzàlez LM, Saarma U (2016) Genetic diversity and phylogeography of highly zoonotic Echinococcus granulosus genotype G1 in the Americas (Argentina, Brazil, Chile and Mexico) based on 8279bp of mtDNA. Infect Genet Evol 45:290–296.  https://doi.org/10.1016/j.meegid.2016.09.015 CrossRefGoogle Scholar
  26. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452.  https://doi.org/10.1093/bioinformatics/btp187 CrossRefGoogle Scholar
  27. Maillard S, Benchikh-Elfegoun MC, Knapp J, Bart JM, Koskei P, Gottstein B, Piarroux R (2007) Taxonomic position and geographical distribution of the common sheep G1 and camel G6 strains of Echinococcus granulosus in three African countries. Parasitol Res 100:495–503.  https://doi.org/10.1007/s00436-006-0286-9 CrossRefGoogle Scholar
  28. Muigai AWT, Hanotte O (2013) The origin of African sheep: archaeological and genetic perspectives. Afr Archaeol Rev 30:39–50.  https://doi.org/10.1007/s10437-013-9129-0 CrossRefGoogle Scholar
  29. Nakao M, Sako Y, Ito A (2003) Isolation of polymorphic microsatellite loci from the tapeworm Echinococcus multilocularis. Infect Genet Evol 3:159–163.  https://doi.org/10.1016/S1567-1348(03)00070-4 CrossRefGoogle Scholar
  30. Nakao M, Lavikainen A, Yanagida T, Ito A (2013) Phylogenetic systematics of the genus Echinococcus (Cestoda: Taeniidae). Int J Parasitol 43:1017–1029.  https://doi.org/10.1016/j.ijpara.2013.06.002 CrossRefGoogle Scholar
  31. Ouchene N, Bitam I, Zeroual F, Ouchene-Khelifi NA (2014) Cystic echinococcosis in wild boars (Sus scrofa) and slaughtered domestic ruminants in Algeria. Asian J Anim Vet Adv 9:767–774.  https://doi.org/10.3923/ajava.2014.767.774 CrossRefGoogle Scholar
  32. Rannamäe E, Lõugas L, Niemi M, Kantanen J, Maldre L, Kadõrova N, Saarma U (2016) Maternal and paternal genetic diversity of ancient sheep in Estonia from the Late Bronze Age to the post-medieval period and comparison with other regions in Eurasia. Anim Genet 47:208–218.  https://doi.org/10.1111/age.12407 CrossRefGoogle Scholar
  33. Romig T, Ebi D, Wassermann M (2015) Taxonomy and molecular epidemiology of Echinococcus granulosus sensu lato. Vet Parasitol 213:76–84.  https://doi.org/10.1016/j.vetpar.2015.07.035 CrossRefGoogle Scholar
  34. Romig T, Deplazes P, Jenkins D, Giraudoux P, Massolo A, Craig PS, Wassermann M, Takahashi K, de la Rue M (2017) Ecology and life cycle patterns of Echinococcus species. Adv Parasitol 95:213–314.  https://doi.org/10.1016/bs.apar.2016.11.002 CrossRefGoogle Scholar
  35. Sadjjadi SM (2006) Present situation of echinococcosis in the Middle East and Arabic North Africa. Parasitol Int 55(Suppl):S197–S202.  https://doi.org/10.1016/j.parint.2005.11.030 CrossRefGoogle Scholar
  36. Yanagida T, Mohammadzadeh T, Kamhawi S, Nakao M, Sadjjadi SM, Hijjawi N, Abdel-Hafez SK, Sako Y, Okamoto M, Ito A (2012) Genetic polymorphisms of Echinococcus granulosus sensu stricto in the Middle East. Parasitol Int 61:599–603.  https://doi.org/10.1016/j.parint.2012.05.014 CrossRefGoogle Scholar
  37. Zait H, Kouidri M, Grenouillet FE, Umhang G, Millon L, Hamrioui B, Grenouillet F (2016) Molecular characterization of Echinococcus granulosus sensu stricto and Echinococcus canadensis in humans and livestock from Algeria. Parasitol Res 115:2423–2431.  https://doi.org/10.1007/s00436-016-4994-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Natural Sciences and LifeUniversity of DjelfaDjelfaAlgeria
  2. 2.Parasitology Unit (220B), Institute of ZoologyUniversity of HohenheimStuttgartGermany

Personalised recommendations