Advertisement

Parasitology Research

, Volume 117, Issue 11, pp 3367–3380 | Cite as

Experimental models in Chagas disease: a review of the methodologies applied for screening compounds against Trypanosoma cruzi

  • Cristina Fonseca-Berzal
  • Vicente J. Arán
  • José A. Escario
  • Alicia Gómez-Barrio
Review
  • 86 Downloads

Abstract

One of the main problems of Chagas disease (CD), the parasitic infection caused by Trypanosoma cruzi, is the lack of a completely satisfactory treatment, which is currently based on two old nitroheterocyclic drugs (i.e., nifurtimox and benznidazole) that show important limitations for treating patients. In this context, many laboratories look for alternative therapies potentially applicable to the treatment, and therefore, research in CD chemotherapy works in the design of experimental protocols for detecting molecules with activity against T. cruzi. Phenotypic assays are considered the most valuable strategy for screening these antiparasitic compounds. Among them, in vitro experiments are the first step to test potential anti-T. cruzi drugs directly on the different parasite forms (i.e., epimastigotes, trypomastigotes, and amastigotes) and to detect cytotoxicity. Once the putative trypanocidal drug has been identified in vitro, it must be moved to in vivo models of T. cruzi infection, to explore (i) acute toxicity, (ii) efficacy during the acute infection, and (iii) efficacy in the chronic disease. Moreover, in silico approaches for predicting activity have emerged as a supporting tool for drug screening procedures. Accordingly, this work reviews those in vitro, in vivo, and in silico methods that have been routinely applied during the last decades, aiming to discover trypanocidal compounds that contribute to developing more effective CD treatments.

Keywords

Chagas disease Trypanosoma cruzi Experimental chemotherapy In vitro In vivo In silico 

Notes

Funding information

The authors thank the Spanish Ministry of Economy, Industry and Competitiveness (MINEICO, ref. SAF2015-66690-R) and the 911120 UCM-CEI Moncloa Research Group “Terapia Antiparasitaria.”

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ablett EM, Sturm RA, Parsons PG (1998) Improved β-galactosidase reporter assays: optimization for low activity in mammalian cells. Tech Tips Online 3:29–31CrossRefGoogle Scholar
  2. Allen DD, Caviedes R, Cárdenas AM, Shimahara T, Segura-Aguilar J, Caviedes PA (2005) Cell lines as in vitro models for drug screening and toxicity studies. Drug Dev Ind Pharm 31:757–768CrossRefGoogle Scholar
  3. Alonso-Padilla J, Cotillo I, Presa JL, Cantizani J, Peña I, Bardera AI, Martín JJ, Rodríguez A (2015) Automated high-content assay for compounds selectively toxic to Trypanosoma cruzi in a myoblastic cell line. PLoS Negl Trop Dis 9:e0003493.  https://doi.org/10.1371/journal.pntd.0003493 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andriani G, Chessler ADC, Courtemanche G, Burleigh BA, Rodríguez A (2011) Activity in vivo of anti-Trypanosoma cruzi compounds selected from a high throughput screening. PLoS Negl Trop Dis 5:e1298.  https://doi.org/10.1371/journal.pntd.0001298 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Aravena CM, Olea-Azar C, Cerecetto H, González M, Maya JD, Rodríguez-Becerra J (2011) Potent 5-nitrofuran derivatives inhibitors of Trypanosoma cruzi growth: electrochemical, spectroscopic and biological studies. Spectrochim Acta A Mol Biomol Spectrosc 79:312–319CrossRefGoogle Scholar
  6. Bahia MT, de Andrade IM, Martins TAF, do Nascimento AFS, Diniz LF, Caldas IS, Talvani A, Trunz BB, Torreele E, Ribeiro I (2012) Fexinidazole: a potential new drug candidate for Chagas disease. PLoS Negl Trop Dis 6:e1870.  https://doi.org/10.1371/journal.pntd.0001870 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bahia MT, Nascimento AFS, Mazzeti AL, Marques LF, Gonçalves KR, Mota LWR, Diniz LF, Caldas IS, Talvani A, Shackleford DM, Koltun M, Saunders J, White KL, Scandale I, Charman SA, Chatelain E (2014a) Antitrypanosomal activity of fexinidazole metabolites, potential new drug candidates for Chagas disease. Antimicrob Agents Chemother 58:4362–4370CrossRefGoogle Scholar
  8. Bahia MT, Diniz LF, Mosqueira VCF (2014b) Therapeutical approaches under investigation for treatment of Chagas disease. Expert Opin Investig Drugs 23:1225–1237CrossRefGoogle Scholar
  9. Batista DGJ, Batista MM, de Oliveira GM, do Amaral PB, Lannes-Vieira J, Britto CC, Junqueira A, Lima MM, Romanha AJ, Sales Junior PA, Stephens CE, Boykin DW, Soeiro MNC (2010) Arylimidamide DB766, a potential chemotherapeutic candidate for Chagas’ disease treatment. Antimicrob Agents Chemother 54:2940–2952CrossRefGoogle Scholar
  10. Bettiol E, Samanovic M, Murkin AS, Raper J, Buckner F, Rodríguez A (2009) Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening. PLoS Negl Trop Dis 3:e384.  https://doi.org/10.1371/journal.pntd.0000384 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bilbao-Ramos P, Sifontes-Rodríguez S, Dea-Ayuela MA, Bolás-Fernández F (2012) A fluorometric method for evaluation of pharmacological activity against intracellular Leishmania amastigotes. J Microbiol Methods 89:8–11CrossRefGoogle Scholar
  12. Boiani M, Boiani L, Denicola A, Torres de Ortiz S, Serna E, Vera de Bilbao N, Sanabria L, Yaluff G, Nakayama H, Rojas de Arias A, Vega C, Rolón M, Gómez-Barrio A, Cerecetto H, González M (2006) 2H-Benzimidazole 1,3-dioxide derivatives: a new family of water-soluble anti-trypanosomatid agents. J Med Chem 49:3215–3224CrossRefGoogle Scholar
  13. Boiani M, Piacenza L, Hernández P, Boiani L, Cerecetto H, González M, Denicola A (2010) Mode of action of nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: is oxidative stress involved? Biochem Pharmacol 79:1736–1745CrossRefGoogle Scholar
  14. Bot C, Hall BS, Bashir N, Taylor MC, Helsby NA, Wilkinson SR (2010) Trypanocidal activity of aziridinyl nitrobenzamide prodrugs. Antimicrob Agents Chemother 54:4246–4252CrossRefGoogle Scholar
  15. Branquinha MH, Oliveira SSC, Sangenito LS, Sodré CL, Kneipp LF, d’Avila-Levy CM, Santos ALS (2015) Cruzipain: an update on its potential as chemotherapy target against the human pathogen Trypanosoma cruzi. Curr Med Chem 22:2225–2235CrossRefGoogle Scholar
  16. Buckner FS, Verlinde CLMJ, La Flamme AC, van Voorhis WC (1996) Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing β-galactosidase. Antimicrob Agents Chemother 40:2592–2597CrossRefGoogle Scholar
  17. Buckner FS, Wilson AJ, van Voorhis WC (1999) Detection of live Trypanosoma cruzi in tissues of infected mice by using histochemical stain for β-galactosidase. Infect Immun 67:403–409PubMedPubMedCentralGoogle Scholar
  18. Bustamante JM, Tarleton RL (2011) Methodological advances in drug discovery for Chagas disease. Expert Opin Drug Discov 6:653–661CrossRefGoogle Scholar
  19. Bustamante JM, Lo Presti MS, Rivarola HW, Fernández AR, Enders JE, Fretes RE, Paglini-Oliva P (2007) Treatment with benznidazole or thioridazine in the chronic phase of experimental Chagas disease improves cardiopathy. Int J Antimicrob Agents 29:733–737CrossRefGoogle Scholar
  20. Camargo EP (1964) Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop São Paulo 6:93–100PubMedGoogle Scholar
  21. Canavaci AMC, Bustamante JM, Padilla AM, Pérez Brandan CM, Simpson LJ, Xu D, Boehlke CL, Tarleton RL (2010) In vitro and in vivo high-throughput assays for the testing of anti-Trypanosoma cruzi compounds. PLoS Negl Trop Dis 4:e740.  https://doi.org/10.1371/journal.pntd.0000740 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Castillo-Garit JA, Vega MC, Rolón M, Marrero-Ponce Y, Kouznetsov VV, Amado Torres DF, Gómez-Barrio A, Álvarez Bello A, Montero A, Torrens F, Pérez-Giménez F (2010) Computational discovery of novel trypanosomicidal drug-like chemicals by using bond-based non-stochastic and stochastic quadratic maps and linear discriminant analysis. Eur J Pharm Sci 39:30–36CrossRefGoogle Scholar
  23. Castillo-Garit JA, Vega MC, Rolón M, Marrero-Ponce Y, Gómez-Barrio A, Escario JA, Álvarez Bello A, Montero A, Torrens F, Pérez-Giménez F, Arán VJ, Abad C (2011) Ligand-based discovery of novel trypanosomicidal drug-like compounds: in silico identification and experimental support. Eur J Med Chem 46:3324–3330CrossRefGoogle Scholar
  24. Castillo-Garit JA, del Toro-Cortés O, Kouznetsov VV, Puentes CO, Romero Bohórquez AR, Vega MC, Rolón M, Escario JA, Gómez-Barrio A, Marrero-Ponce Y, Torrens F, Abad C (2012) Identification in silico and in vitro of novel trypanosomicidal drug-like compounds. Chem Biol Drug Des 80:38–45CrossRefGoogle Scholar
  25. Castillo-Garit JA, del Toro-Cortés O, Vega MC, Rolón M, Rojas de Arias A, Casañola-Martín GM, Escario JA, Gómez-Barrio A, Marrero-Ponce Y, Torrens F, Abad C (2015) Bond-based bilinear indices for computational discovery of novel trypanosomicidal drug-like compounds through virtual screening. Eur J Med Chem 96:238–244CrossRefGoogle Scholar
  26. Chagas C (1909) Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz 1:159–218CrossRefGoogle Scholar
  27. Chatelain E (2015) Chagas disease drug discovery: toward a new era. J Biomol Screen 20:22–35CrossRefGoogle Scholar
  28. Chatelain E, Konar N (2015) Translational challenges of animal models in Chagas disease drug development: a review. Drug Des Devel Ther 9:4807–4823CrossRefGoogle Scholar
  29. Contreras VT, Navarro MC, de Lima AR, Arteaga R, Duran F, Askue J, Franco Y (2002) Production of amastigotes from metacyclic trypomastigotes of Trypanosoma cruzi. Mem Inst Oswaldo Cruz 97:1213–1220CrossRefGoogle Scholar
  30. Coura JR (2009) Present situation and new strategies for Chagas disease chemotherapy: a proposal. Mem Inst Oswaldo Cruz 104:549–554CrossRefGoogle Scholar
  31. Coura JR, de Castro SL (2002) A critical review on Chagas disease chemotherapy. Mem Inst Oswaldo Cruz 97:3–24CrossRefGoogle Scholar
  32. da Silva CF, Batista MM, Batista DGJ, de Souza EM, da Silva PB, de Oliveira GM, Meuser AS, Shareef AR, Boykin DW, Soeiro MNC (2008) In vitro and in vivo studies of the trypanocidal activity of a diarylthiophene diamidine against Trypanosoma cruzi. Antimicrob Agents Chemother 52:3307–3314CrossRefGoogle Scholar
  33. da Silva CF, Batista DGJ, Batista MM, Lionel J, Hammer ER, Brun R, Soeiro MNC (2014) In vitro and in vivo activity of the chloroaryl-substituted imidazole viniconazole against Trypanosoma cruzi. Parasitology 141:367–373CrossRefGoogle Scholar
  34. da Silva CF, Batista DGJ, de Araújo JS, Cunha-Júnior EF, Stephens CE, Banerjee M, Farahat AA, Akay S, Fisher MK, Boykin DW, Soeiro MNC (2017) Phenotypic evaluation and in silico aDMeT properties of novel arylimidamides in acute mouse models of Trypanosoma cruzi infection. Drug Des Devel Ther 11:1095–1105CrossRefGoogle Scholar
  35. de Castro SL, Meirelles MN (1990) Mechanism of action of a nitroimidazole-thiadiazole derivate upon Trypanosoma cruzi tissue culture amastigotes. Mem Inst Oswaldo Cruz 85:95–99CrossRefGoogle Scholar
  36. Dias JCP, Coura JR, Shikanai Yasuda MA (2014) The present situation, challenges, and perspectives regarding the production and utilization of effective drugs against human Chagas disease. Rev Soc Bras Med Trop 47:123–125CrossRefGoogle Scholar
  37. Don R, Ioset JR (2014) Screening strategies to identify new chemical diversity for drug development to treat kinetoplastid infections. Parasitology 141:140–146CrossRefGoogle Scholar
  38. Dubner S, Schapachnik E, Pérez Riera AR, Valero E (2008) Chagas disease: state-of-the-art of diagnosis and management. Cardiol J 15:493–504PubMedGoogle Scholar
  39. Dudek AZ, Arodz T, Gálvez J (2006) Computational methods in developing quantitative structure-activity relationships (QSAR): a review. Comb Chem High Throughput Screen 9:213–228CrossRefGoogle Scholar
  40. Ekins S, Mestres J, Testa B (2007) In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol 152:9–20CrossRefGoogle Scholar
  41. Escalona J, Carrasco CR, Padrón JA (2003) Introducción al diseño de fármacos. Folleto para la docencia de la asignatura de Farmacia. Universidad de Oriente, CubaGoogle Scholar
  42. Fauro R, Lo Presti S, Bazan C, Baez A, Strauss M, Triquell F, Cremonezzi D, Negrete OS, Willhuber GC, Paglini-Oliva P, Rivarola HW (2013) Use of clomipramine as chemotherapy of the chronic phase of Chagas disease. Parasitology 140:917–927CrossRefGoogle Scholar
  43. Fernandes MC, da Silva EN Jr, Pinto AV, de Castro SL, Menna-Barreto RFS (2012) A novel triazolic naphthofuranquinone induces autophagy in reservosomes and impairment of mitosis in Trypanosoma cruzi. Parasitology 139:26–36CrossRefGoogle Scholar
  44. Fonseca-Berzal C, Escario JA, Arán VJ, Gómez-Barrio A (2014) Further insights into biological evaluation of new anti-Trypanosoma cruzi 5-nitroindazoles. Parasitol Res 113:1049–1056CrossRefGoogle Scholar
  45. Fonseca-Berzal C, da Silva PB, da Silva CF, Vasconcelos M, Batista MM, Escario JA, Arán VJ, Gómez-Barrio A, Soeiro MNC (2015) Exploring the potential activity spectrum of two 5-nitroindazolinone prototypes on different Trypanosoma cruzi strains. Parasitology Open 1:e1.  https://doi.org/10.1017/pao.2015.4 CrossRefGoogle Scholar
  46. Fonseca-Berzal C, Ibáñez-Escribano A, Reviriego F, Cumella J, Morales P, Jagerovic N, Nogal-Ruiz JJ, Escario JA, da Silva PB, Soeiro MNC, Gómez-Barrio A, Arán VJ (2016a) Antichagasic and trichomonacidal activity of 1-substituted 2-benzyl-5-nitroindazolin-3-ones and 3-alkoxy-2-benzyl-5-nitro-2H-indazoles. Eur J Med Chem 115:295–310CrossRefGoogle Scholar
  47. Fonseca-Berzal C, da Silva CF, Menna-Barreto RFS, Batista MM, Escario JA, Arán VJ, Gómez-Barrio A, Soeiro MNC (2016b) Biological approaches to characterize the mode of action of two 5-nitroindazolinone prototypes on Trypanosoma cruzi bloodstream trypomastigotes. Parasitology 143:1469–1478CrossRefGoogle Scholar
  48. Fonseca-Berzal C, Ibáñez-Escribano A, Vela N, Cumella J, Nogal-Ruiz JJ, Escario JA, da Silva PB, Batista MM, Soeiro MNC, Sifontes-Rodríguez S, Meneses-Marcel A, Gómez-Barrio A, Arán VJ (2018) Antichagasic, leishmanicidal, and trichomonacidal activity of 2-benzyl-5-nitroindazole-derived amines. ChemMedChem 13:1246–1259CrossRefGoogle Scholar
  49. Francisco AF, Jayawardhana S, Lewis MD, Taylor MC, Kelly JM (2017) Biological factors that impinge on Chagas disease drug development. Parasitology 144:1871–1880CrossRefGoogle Scholar
  50. Gascón J, Bern C, Pinazo MJ (2010) Chagas disease in Spain, United States and other non-endemic countries. Acta Trop 115:22–27CrossRefGoogle Scholar
  51. Gómez-Barrio A, Montero-Pereira D, Nogal-Ruiz JJ, Escario JA, Muelas-Serrano S, Kouznetsov VV, Méndez LYV, Gonzáles JMU, Ochoa C (2006) Antiparasitic properties of homoallylamines and related compounds. Acta Parasitol 51:73–78CrossRefGoogle Scholar
  52. Guedes PMM, Veloso VM, Tafuri WL, Galvão LMC, Carneiro CM, Lana M, Chiari E, Ataide Soares K, Bahia MT (2002) The dog as model for chemotherapy of the Chagas’ disease. Acta Trop 84:9–17CrossRefGoogle Scholar
  53. Guedes PMM, Silva GK, Gutiérrez FRS, Silva JS (2011) Current status of Chagas disease chemotherapy. Expert Rev Anti-Infect Ther 9:609–620CrossRefGoogle Scholar
  54. Guedes PMM, Veloso VM, Mineo TWP, Santiago-Silva J, Crepalde G, Caldas IS, Nascimento MSL, Lana M, Chiari E, Galvão LMC, Bahia MT (2012) Hematological alterations during experimental canine infection by Trypanosoma cruzi. Rev Bras Parasitol Vet 21(2):151–156CrossRefGoogle Scholar
  55. Hashimoto M, Morales J, Uemura H, Mikoshiba K, Nara T (2015) A novel method for inducing amastigote-to-trypomastigote transformation in vitro in Trypanosoma cruzi reveals the importance of inositol 1,4,5-trisphosphate receptor. PLoS One 10:e0135726.  https://doi.org/10.1371/journal.pone.0135726 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Henriques C, Henriques-Pons A, Meuser-Batista M, Ribeiro AS, de Souza W (2014) In vivo imaging of mice infected with bioluminescent Trypanosoma cruzi unveils novel sites of infection. Parasit Vectors 7:89.  https://doi.org/10.1186/1756-3305-7-89 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Hudock MP, Sanz-Rodríguez CE, Song Y, Chan JMW, Zhang Y, Odeh S, Kosztowski T, Leon-Rossell A, Concepción JL, Yardley V, Croft SL, Urbina JA, Oldfield E (2006) Inhibition of Trypanosoma cruzi hexokinase by bisphosphonates. J Med Chem 49:215–223CrossRefGoogle Scholar
  58. Keenan M, Chaplin JH, Alexander PW, Abbott MJ, Best WM, Khong A, Botero A, Pérez C, Cornwal S, Thompson RA, White KL, Shackleford DM, Koltun M, Chiu FCK, Morizzi J, Ryan E, Campbell M, von Geldern TW, Scandale I, Chatelain E, Charman SA (2013) Two analogues of fenarimol show curative activity in an experimental model of Chagas disease. J Med Chem 56:10158–10170CrossRefGoogle Scholar
  59. Kessler RL, Gradia DF, Pontello Rampazzo RC, Lourenco ÉE, Fidêncio NJ, Manhaes L, Probst CM, Ávila AR, Fragoso SP (2013) Stage-regulated GFP expression in Trypanosoma cruzi: applications from host-parasite interactions to drug screening. PLoS One 8:e67441.  https://doi.org/10.1371/journal.pone.0067441 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Khabnadideh S, Pez D, Musso A, Brun R, Ruiz Pérez LM, González-Pacanowska D, Gilbert IH (2005) Design, synthesis and evaluation of 2,4-diaminoquinazolines as inhibitors of trypanosomal and leishmanial dihydrofolate reductase. Bioorg Med Chem 13:2637–2649CrossRefGoogle Scholar
  61. Lavorato SN, Sales Júnior PA, Murta SMF, Romanha AJ, Alves RJ (2015) In vitro activity of 1,3-bisaryloxypropanamines against Trypanosoma cruzi-infected L929 cultures. Mem Inst Oswaldo Cruz 110:566–568CrossRefGoogle Scholar
  62. Le-Senne A, Muelas-Serrano S, Fernández-Portillo C, Escario JA, Gómez-Barrio A (2002) Biological characterization of a β-galactosidase expressing clone of Trypanosoma cruzi CL strain. Mem Inst Oswaldo Cruz 97:1101–1105CrossRefGoogle Scholar
  63. Lewis MD, Francisco AF, Taylor MC, Burrell-Saward H, McLatchie AP, Miles MA, Kelly JM (2014) Bioluminescence imaging of chronic Trypanosoma cruzi infections reveals tissue specific parasite dynamics and heart disease in the absence of locally persistent infection. Cell Microbiol 16:1285–1300CrossRefGoogle Scholar
  64. Lewis MD, Francisco AF, Taylor MC, Kelly JM (2015) A new experimental model for assessing drug efficacy against Trypanosoma cruzi infection based on highly sensitive in vivo imaging. J Biomol Screen 20:36–43CrossRefGoogle Scholar
  65. Lipnick RL, Cotruvo JA, Hill RN, Bruce RD, Stitzel KA, Walker AP, Chu I, Goddard M, Segal L, Springer JA, Myers RC (1995) Comparison of the up-and-down, conventional LD50, and fixed-dose acute toxicity procedures. Food Chem Toxicol 33:223–231CrossRefGoogle Scholar
  66. Martínez-Díaz RA, Escario JA, Nogal-Ruiz JJ, Gómez-Barrio A (2001) Biological characterization of Trypanosoma cruzi strains. Mem Inst Oswaldo Cruz 96:53–59CrossRefGoogle Scholar
  67. Méndez-Lucio O, Pérez-Villanueva J, Romo-Mancillas A, Castillo R (2011) 3D-QSAR studies on purine-carbonitriles as cruzain inhibitors: comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Med Chem Commun 2:1058–1065CrossRefGoogle Scholar
  68. Miguel DC, Ferraz ML, Alves RO, Yokoyama-Yasunaka JKU, Torrecilhas AC, Romanha AJ, Uliana SR (2010) The anticancer drug tamoxifen is active against Trypanosoma cruzi in vitro but ineffective in the treatment of the acute phase of Chagas disease in mice. Mem Inst Oswaldo Cruz 105:945–948CrossRefGoogle Scholar
  69. Miranda CG, Solana ME, Curto ML, Lammel EM, Schijman AG, Alba Soto CD (2015) A flow cytometer-based method to simultaneously assess activity and selectivity of compounds against the intracellular forms of Trypanosoma cruzi. Acta Trop 152:8–16CrossRefGoogle Scholar
  70. Montero-Torres A, Vega MC, Marrero-Ponce Y, Rolón M, Gómez-Barrio A, Escario JA, Arán VJ, Martínez-Fernández AR, Meneses-Marcel A (2005) A novel non-stochastic quadratic fingerprints-based approach for the 'in silico' discovery of new antitrypanosomal compounds. Bioorg Med Chem 13:6264–6275CrossRefGoogle Scholar
  71. Moraes CB, Giardini MA, Kim H, Franco CH, Araujo-Junior AM, Schenkman S, Chatelain E, Freitas-Junior LH (2014) Nitroheterocyclic compounds are more efficacious than CYP51 inhibitors against Trypanosoma cruzi: implications for Chagas disease drug discovery and development. Sci Rep 4:4703.  https://doi.org/10.1038/srep04703 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Muelas S, di Maio R, Cerecetto H, Seoane G, Ochoa C, Escario JA, Gómez-Barrio A (2001) New thiadiazine derivatives with activity against Trypanosoma cruzi amastigotes. Folia Parasitol (Praha) 48:105–108CrossRefGoogle Scholar
  73. Muelas S, Suárez M, Pérez R, Rodríguez H, Ochoa C, Escario JA, Gómez-Barrio A (2002) In vitro and in vivo assays of 3,5-disubstituted-tetrahydro-2H-1,3,5-thiadiazin-2-thione derivatives against Trypanosoma cruzi. Mem Inst Oswaldo Cruz 97:269–272CrossRefGoogle Scholar
  74. Muelas-Serrano S, Nogal-Ruiz JJ, Gómez-Barrio A (2000) Setting of a colorimetric method to determine the viability of Trypanosoma cruzi epimastigotes. Parasitol Res 86:999–1002CrossRefGoogle Scholar
  75. Muro B, Reviriego F, Navarro P, Marín C, Ramírez-Macías I, Rosales MJ, Sánchez-Moreno M, Arán VJ (2014) New perspectives on the synthesis and antichagasic activity of 3-alkoxy-1-alkyl-5-nitroindazoles. Eur J Med Chem 74:124–134CrossRefGoogle Scholar
  76. Nefertiti ASG, Batista MM, da Silva PB, Torres-Santos EC, Cunha-Júnior EF, Green J, Kumar A, Faharat AA, Boykin DW, Soeiro MNC (2017) Anti-parasitic effect of novel amidines against Trypanosoma cruzi: phenotypic and in silico absorption, distribution, metabolism, excretion and toxicity analysis. Parasitology Open 3:e5.  https://doi.org/10.1017/pao.2017.5 CrossRefGoogle Scholar
  77. Nefertiti ASG, Batista MM, da Silva PB, Batista DGJ, da Silva CF, Peres RB, Torres-Santos EC, Cunha-Junior EF, Holt E, Boykin DW, Brun R, Wenzler T, Soeiro MNC (2018) In vitro and in vivo studies of the trypanocidal effect of novel quinolines. Antimicrob Agents Chemother 62.  https://doi.org/10.1128/AAC.01936-17
  78. Olmo F, Gómez-Contreras F, Navarro P, Marín C, Yunta MJ, Cano C, Campayo L, Martín-Oliva D, Rosales MJR, Sánchez-Moreno M (2015) Synthesis and evaluation of in vitro and in vivo trypanocidal properties of a new imidazole-containing nitrophthalazine derivative. Eur J Med Chem 106:106–119CrossRefGoogle Scholar
  79. Pinazo MJ, Gascón J (2015) The importance of the multidisciplinary approach to deal with the new epidemiological scenario of Chagas disease (global health). Acta Trop 151:16–20CrossRefGoogle Scholar
  80. Pizzo C, Saiz C, Talevi A, Gavernet L, Palestro P, Bellera C, Blanch LB, Benítez D, Cazzulo JJ, Chidichimo A, Wipf P, Mahler S (2011) Synthesis of 2-hydrazolyl-4-thiazolidinones based on multicomponent reactions and biological evaluation against Trypanosoma cruzi. Chem Biol Drug Des 77:166–172CrossRefGoogle Scholar
  81. Planer JD, Hulverson MA, Arif JA, Ranade RM, Don R, Buckner FS (2014) Synergy testing of FDA-approved drugs identifies potent drug combinations against Trypanosoma cruzi. PLoS Negl Trop Dis 8:e2977.  https://doi.org/10.1371/journal.pntd.0002977 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Rassi A Jr, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375:1388–1402CrossRefGoogle Scholar
  83. Rodríguez J, Gerpe A, Aguirre G, Kemmerling U, Piro OE, Arán VJ, Maya JD, Olea-Azar C, González M, Cerecetto H (2009) Study of 5-nitroindazoles’ anti-Trypanosoma cruzi mode of action: electrochemical behaviour and ESR spectroscopic studies. Eur J Med Chem 44:1545–1553CrossRefGoogle Scholar
  84. Roldos V, Nakayama H, Rolón M, Montero-Torres A, Trucco F, Torres S, Vega C, Marrero-Ponce Y, Heguaburu V, Yaluff G, Gómez-Barrio A, Sanabria L, Ferreira ME, Rojas de Arias A, Pandolfi E (2008) Activity of a hydroxybibenzyl bryophyte constituent against Leishmania spp. and Trypanosoma cruzi: in silico, in vitro and in vivo activity studies. Eur J Med Chem 43:1797–1807CrossRefGoogle Scholar
  85. Rolón M, Vega C, Escario JA, Gómez-Barrio A (2006a) Development of resazurin microtiter assay for drug sensibility testing of Trypanosoma cruzi epimastigotes. Parasitol Res 99:103–107CrossRefGoogle Scholar
  86. Rolón M, Seco EM, Vega C, Nogal JJ, Escario JA, Gómez-Barrio A, Malpartida F (2006b) Selective activity of polyene macrolides produced by genetically modified Streptomyces on Trypanosoma cruzi. Int J Antimicrob Agents 28:104–109CrossRefGoogle Scholar
  87. Romanha AJ, de Castro SL, Soeiro MNC, Lannes-Vieira J, Ribeiro I, Talvani A, Bourdin B, Blum B, Olivieri B, Zani C, Spadafora C, Chiari E, Chatelain E, Chaves G, Calzada JE, Bustamante JM, Freitas-Junior LH, Romero LI, Bahia MT, Lotrowska M, Soares M, Andrade SG, Armstrong T, Degrave W, Andrade ZA (2010) In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem Inst Oswaldo Cruz 105:233–238CrossRefGoogle Scholar
  88. Salas C, Tapia RA, Ciudad K, Armstrong V, Orellana M, Kemmerling U, Ferreira J, Maya JD, Morello A (2008) Trypanosoma cruzi: activities of lapachol and α- and β-lapachone derivatives against epimastigote and trypomastigote forms. Bioorg Med Chem 16:668–674CrossRefGoogle Scholar
  89. Salomão K, de Santana NA, Molina MT, de Castro SL, Menna-Barreto RFS (2013) Trypanosoma cruzi mitochondrial swelling and membrane potential collapse as primary evidence of the mode of action of naphthoquinone analogues. BMC Microbiol 13:196.  https://doi.org/10.1186/1471-2180-13-196 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Santa-Rita RM, Barbosa HS, de Castro SL (2006) Ultrastructural analysis of edelfosine-treated trypomastigotes and amastigotes of Trypanosoma cruzi. Parasitol Res 100:187–190CrossRefGoogle Scholar
  91. Santos FM, Lima WG, Gravel AS, Martins TAF, Talvani A, Torres RM, Bahia MT (2012) Cardiomyopathy prognosis after benznidazole treatment in chronic canine Chagas’ disease. J Antimicrob Chemother 67:1987–1995CrossRefGoogle Scholar
  92. Saraiva J, Vega C, Rolón M, da Silva R, Andrade e Silva ML, Donate PM, Bastos JK, Gómez-Barrio A, de Albuquerque S (2007) In vitro and in vivo activity of lignan lactones derivatives against Trypanosoma cruzi. Parasitol Res 100:791–795CrossRefGoogle Scholar
  93. Soeiro MNC, de Souza EM, da Silva CF, Batista DGJ, Batista MM, Pavão BP, de Araújo JS, Fortes Aiub CA, da Silva PB, Lionel J, Britto C, Kim K, Sulikowski G, Hargrove TY, Waterman MR, Lepesheva GI (2013) In vitro and in vivo studies of the antiparasitic activity of sterol 14α-demethylase (CYP51) inhibitor VNI against drug-resistant strains of Trypanosoma cruzi. Antimicrob Agents Chemother 57:4151–4163CrossRefGoogle Scholar
  94. Steverding D (2014) The history of Chagas disease. Parasit Vectors 7:317.  https://doi.org/10.1186/1756-3305-7-317 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Sykes ML, Avery VM (2013) Approaches to protozoan drug discovery: phenotypic screening. J Med Chem 56:7727–7740CrossRefGoogle Scholar
  96. Talevi A, Bruno-Blanch LE (2009) Screening virtual: una herramienta eficaz para el desarrollo de nuevos fármacos en Latinoamérica. Lat Am J Pharm 28:141–150Google Scholar
  97. Teixeira AR, Nascimento RJ, Sturm NR (2006) Evolution and pathology in Chagas disease—a review. Mem Inst Oswaldo Cruz 101:463–491CrossRefGoogle Scholar
  98. Timm BL, da Silva PB, Batista MM, da Silva FHG, da Silva CF, Tidwell RR, Patrick DA, Jones SK, Bakunov SA, Bakunova SM, Soeiro MNC (2014) In vitro and in vivo biological effects of novel arylimidamide derivatives against Trypanosoma cruzi. Antimicrob Agents Chemother 58:3720–3726CrossRefGoogle Scholar
  99. Tomlinson S, Vandekerckhove F, Frevert U, Nussenzweig V (1995) The induction of Trypanosoma cruzi trypomastigote to amastigote transformation by low pH. Parasitology 110:547–554CrossRefGoogle Scholar
  100. Vega C, Rolón M, Martínez-Fernández AR, Escario JA, Gómez-Barrio A (2005) A new pharmacological screening assay with Trypanosoma cruzi epimastigotes expressing β-galactosidase. Parasitol Res 95:296–298CrossRefGoogle Scholar
  101. Vega MC, Montero-Torres A, Marrero-Ponce Y, Rolón M, Gómez-Barrio A, Escario JA, Arán VJ, Nogal JJ, Meneses-Marcel A, Torrens F (2006) New ligand-based approach for the discovery of antitrypanosomal compounds. Bioorg Med Chem Lett 16:1898–1904CrossRefGoogle Scholar
  102. Vega MC, Rolón M, Montero-Torres A, Fonseca-Berzal C, Escario JA, Gómez-Barrio A, Gálvez J, Marrero-Ponce Y, Arán VJ (2012) Synthesis, biological evaluation and chemometric analysis of indazole derivatives. 1,2-Disubstituted 5-nitroindazolinones, new prototypes of antichagasic drug. Eur J Med Chem 58:214–227CrossRefGoogle Scholar
  103. Veiga-Santos P, Desoti VC, Miranda N, Ueda-Nakamura T, Dias-Filho BP, Silva SO, García Cortez DA, de Mello JCP, Nakamura CV (2013) The natural compounds piperovatine and piperlonguminine induce autophagic cell death on Trypanosoma cruzi. Acta Trop 125:349–356CrossRefGoogle Scholar
  104. Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design—a review. Curr Top Med Chem 10:95–115CrossRefGoogle Scholar
  105. Vieira DF, Choi JY, Calvet CM, Siqueira-Neto JL, Johnston JB, Kellar D, Gut J, Cameron MD, McKerrow JH, Roush WR, Podust LM (2014) Binding mode and potency of N-indolyloxopyridinyl-4-aminopropanyl-based inhibitors targeting Trypanosoma cruzi CYP51. J Med Chem 57:10162–10175CrossRefGoogle Scholar
  106. Villalta F, Dobish MC, Nde PN, Kleshchenko YY, Hargrove TY, Johnson CA, Waterman MR, Johnston JN, Lepesheva GI (2013) VNI cures acute and chronic experimental Chagas disease. J Infect Dis 208:504–511CrossRefGoogle Scholar
  107. Walum E (1998) Acute oral toxicity. Environ Health Perspect 106(Suppl. 2):497–503PubMedPubMedCentralGoogle Scholar
  108. Willett P (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 11:1046–1053CrossRefGoogle Scholar
  109. Wong-Baeza C, Nogueda-Torres B, Serna M, Meza-Toledo S, Baeza I, Wong C (2015) Trypanocidal effect of the benzyl ester of N-propyl oxamate: a bi-potential prodrug for the treatment of experimental Chagas disease. BMC Pharmacol Toxicol 16:10.  https://doi.org/10.1186/s40360-015-0010-4 CrossRefPubMedPubMedCentralGoogle Scholar
  110. World Health Organization (2015) Investing to overcome the global impact of neglected tropical diseases, third WHO report on neglected tropical diseases. Department of Control of Neglected Tropical Diseases, World Health Organization, GenevaGoogle Scholar
  111. World Health Organization (2017) Integrating neglected tropical diseases into global health and development. Fourth WHO report on neglected tropical diseases. Department of Control of Neglected Tropical Diseases, World Health Organization, GenevaGoogle Scholar
  112. Zingales B, Andrade SG, Briones MRS, Campbell DA, Chiari E, Fernandes O, Guhl F, Lages-Silva E, Macedo AM, Machado CR, Miles MA, Romanha AJ, Sturm NR, Tibayrenc M, Schijman AG (2009) A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104:1051–1054CrossRefGoogle Scholar
  113. Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, Teixeira MMG, Schijman AG, Llewellyn MS, Lages-Silva E, Machado CR, Andrade SG, Sturm NR (2012) The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 12:240–253CrossRefGoogle Scholar
  114. Zuccotto F, Martin ACR, Laskowski RA, Thornton JM, Gilbert IH (1998) Dihydrofolate reductase: a potential drug target in trypanosomes and leishmania. J Comput Aided Mol Des 12:241–257CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Cristina Fonseca-Berzal
    • 1
  • Vicente J. Arán
    • 2
  • José A. Escario
    • 1
  • Alicia Gómez-Barrio
    • 1
  1. 1.Departamento de Microbiología y Parasitología, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
  2. 2.Instituto de Química Médica (IQM)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain

Personalised recommendations