Advertisement

Parasitology Research

, Volume 117, Issue 11, pp 3653–3658 | Cite as

Grillotia (Cestoda: Trypanorhyncha) plerocerci in an anglerfish (Lophius piscatorius) from the Tyrrhenian Sea

  • Mario Santoro
  • Barbara Degli Uberti
  • Federica Corrado
  • Anna Cutarelli
  • Doriana Iaccarino
  • Fabio Di Nocera
  • Marianna D’Amore
  • Giovanna De Luca
  • Anna Cerrone
  • Federico Capuano
  • Giorgio Galiero
Original Paper

Abstract

Trypanorhynch cestodes are common parasites of marine fish with complicated life cycles which have been suggested as model taxa to study the evolution of marine helminth parasites and their life cycles. Among the Trypanorhyncha, the genus Grillotia includes 18 valid species, of which only four have been found in Mediterranean fish hosts. Morphological, histopathological, and molecular data are presented on a massive Grillotia plerocercus infection in an anglerfish (Lophius piscatorius) from the Tyrrhenian Sea. BLAST analysis of the 28S rDNA sequences revealed 99% similarity between specimens here found and a G. (Bathygrillotia) rowei sequence available in GenBank with a total of six nucleotide site differences. A morphological study suggested that the Grillotia sp. here reported did not match important characters to those previously reported from the Mediterranean Sea. Taking in account these differences, we prefer to place these specimens within Grillotia sensu lato until more material is available for study including sequences from adult specimens of Grillotia spp. from the Mediterranean Sea.

Keywords

Grillotia sensu lato Trypanorhynch cestodes 28S rDNA Mediterranean Sea 

Notes

Acknowledgments

We thank Eurofish Napoli S.r.l. for providing the anglerfish. The first draft of the manuscript was improved by the comments and advices from Mike Kinsella (Helm West Laboratory, USA). Giuseppe Di Vincenzo assembled the figures of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Beveridge I, Campbell RA (2001) Grillotia australis n. sp. and G. pristiophori n. sp. (Cestoda: Trypanorhyncha) from Australian elasmobranch and teleost fishes. Syst Parasitol 49(2):113–126CrossRefGoogle Scholar
  2. Beveridge I, Campbell RA (2007) Revision of the Grillotia erinaceus (van Beneden, 1858) species complex (Cestoda: Trypanorhyncha), with the description of G. brayi n.sp. Syst Parasitol 68:1–31CrossRefGoogle Scholar
  3. Beveridge I, Campbell RA (2010) Validation of Christianella Guiart, 1931 (Cestoda: Trypanorhyncha) and its taxonomic relationship with Grillotia Guiart, 1927. Syst Parasitol 76(2):111–129CrossRefGoogle Scholar
  4. Beveridge I, Campbell RA (2012) Bathygrillotia n. g. (Cestoda: Trypanorhyncha), with redescriptions of B. rowei (Campbell, 1977) n. comb. and B. kovalevae (Palm, 1995) n. comb. Syst Parasitol 82(3):249–259CrossRefGoogle Scholar
  5. Beveridge I, Campbell RA (2013) A new species of Grillotia Guiart, 1927 (Cestoda:Trypanorhyncha) with redescriptions of congeners and new synonyms. Syst Parasitol 85(2):99–116CrossRefGoogle Scholar
  6. Bryan DR, Jacobson KC, Buchanan JC (2012) Recent increase in Nybelinia surmenicola prevalence and intensity in Pacific hake (Merluccius productus) off the United States west coast. J Parasitol 98(1):85–92CrossRefGoogle Scholar
  7. Campbell RA, Beveridge I (1994) Order Trypanorhyncha Diesing, 1863. In: Khalil LF, Jones A, Bray RA (eds) Keys to the cestode parasites of vertebrates. Commonwealth Agricultural Bureaux International, Wallingford, pp 51–148Google Scholar
  8. Dallarés S (2016) Twenty thousand parasites under the sea: a multidisciplinary approach to parasite communities of deep-dwelling fishes from the slopes of the Balearic Sea (NW Mediterranean). PhD Thesis. Universitat Autònoma de BarcelonaGoogle Scholar
  9. Dallarés S, Moyà-Alcover CM, Padrós F, Cartes JE, Solé M, Castañeda C, Carrassón M (2016) The parasite community of Phycis blennoides (Brünnich, 1768) from the Balearic Sea in relation to diet, biochemical markers, histopathology and environmental variables. Deep-Sea Res Part I 118:84–100CrossRefGoogle Scholar
  10. Dollfus RP (1969) De quelques cestodes tétrarhynques (hétéracanthes et pécilacanthes) récoltés chez des poisons de la Méditerranée. Vie et Milieu 20:491–542Google Scholar
  11. Gòmez-Morales MA, Ludovisi A, Giuffra E, Manfredi MT, Piccolo G, Pozio E (2008) Allergenic activity of Molicola horridus (Cestoda, Trypanorhyncha), a cosmopolitan fish parasite, in a mouse model. Vet Parasitol 157(3–4):314–320CrossRefGoogle Scholar
  12. Guiart J (1935) Cestodes parasites provenant des campagnes scientifiques de S. A. S. le Prince Albert I″ de Monaco (1886–1913). Résultats des campagnes scientifiques accomplies sur son yacht par Albert 1er Prince souverain du Monaco. vol. 91 pp 3–115Google Scholar
  13. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  14. Jensen K, Bullard SA (2010) Characterization of a diversity of tetraphyllidean and rhinebothriidean cestode larval types, with comments on host associations and life cycles. Int J Parasitol 40:889–910CrossRefGoogle Scholar
  15. Paggi L (2008) Cestoda. Biol Mar Mediterr 15:150–154Google Scholar
  16. Palm HW (2004) The Trypanorhyncha Diesing, 1863. PKSPL-IPB Press, BogorGoogle Scholar
  17. Palm HW, Klimpel S (2007) Evolution of parasitic life in the ocean. Trends Parasitol 23(1):10–12CrossRefGoogle Scholar
  18. Palm HW, Waeschenbach A, Littlewood DTJ (2007) Genetic diversity in the trypanorhynch cestode Tentacularia coryphaenae Bosc, 1797: evidence for a cosmopolitan distribution and low host specificity in the teleost intermediate host. Parasitol Res 101:153–159CrossRefGoogle Scholar
  19. Palm HW, Waeschenbach A, Olson PD, Littlewood DTJ (2009) Molecular phylogeny and evolution of the Trypanorhyncha Diesing, 1863 (Platyhelminthes: Cestoda). Mol Phylogenet Evol 52:351–367CrossRefGoogle Scholar
  20. Pintner T (1930) Wenigbekanntes und Unbekanntes von Rüsselband würmern. Sitzungsberichten der Kaiserlichen Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftiche Klasse 139(1):445–537Google Scholar
  21. Rodero M, Cuellar C (1999) Humoral immune responses induced by Gymnorhynchus gigas extracts in BALB/c mice. J Helminthol 73:239–243PubMedGoogle Scholar
  22. Seamone S, Blaine T, Higham TE (2014) Sharks modulate their escape behavior in response to predator size, speed and orientation approach. Zool 117:377–382CrossRefGoogle Scholar
  23. Stagioni M, Montanini S, Vallisneri M (2013) Feeding habits of anglerfish, Lophius budegassa (Spinola, 1807) in the Adriatic Sea, north-eastern Mediterranean. J Appl Ichthyol 29:374–380CrossRefGoogle Scholar
  24. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weigh matrix choice. Nucleic Acid Res 22:4673–4680CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mario Santoro
    • 1
  • Barbara Degli Uberti
    • 1
  • Federica Corrado
    • 1
  • Anna Cutarelli
    • 1
  • Doriana Iaccarino
    • 1
  • Fabio Di Nocera
    • 1
  • Marianna D’Amore
    • 1
  • Giovanna De Luca
    • 1
  • Anna Cerrone
    • 1
  • Federico Capuano
    • 1
  • Giorgio Galiero
    • 1
  1. 1.Istituto Zooprofilattico Sperimentale del MezzogiornoPorticiItaly

Personalised recommendations