Advertisement

Parasitology Research

, Volume 117, Issue 11, pp 3625–3631 | Cite as

Molecular characterization, expression profile, and preliminary evaluation of diagnostic potential of CD63 in Schistosoma japonicum

  • Lihui Wang
  • Bikash Ranjan Giri
  • Yongjun Chen
  • Tianqi Xia
  • Juntao Liu
  • Huimin Li
  • Jianjun Li
  • Guofeng Cheng
Original Paper
  • 134 Downloads

Abstract

Schistosomes are the causative agents of human schistosomiasis, which is endemic in tropical and subtropical zones. CD63 is a member of the tetraspanin protein family widely expressed among eukaryotes. Previously, we identified a CD63 homolog from extracellular vesicles isolated from Schistosoma japonicum. In this study, we characterized this CD63 homolog using a molecular approach and evaluated the potential of its recombinant protein for the diagnosis of schistosomiasis. A sequence alignment indicated that S. japonicum CD63 (SjCD63) has sequence identities of 76 and 28% with S. mansoni and human CD63, respectively. A phylogenetic analysis displayed that S. japonicum CD63 is related to S. mansoni and Opisthorchis viverrini CD63. The cDNA of SjCD63 was 740 bp long with an expected protein size of 23.58 kDa. A RT-qPCR analysis revealed significantly higher expression of SjCD63 mRNA in adult worms on days 21, 28, and 35 than in 7-day schistosomula, cercariae, and eggs. In addition, recombinant SjCD63 protein detected by ELISA revealed significantly higher optical density values compared to that of the negative control in both S. japonicum-infected mouse and rabbit sera, providing preliminary evidence for its diagnostic potential. Overall, these results provide insight into the molecular properties of SjCD63, its expression profiles, and its preliminary diagnostic potential.

Keywords

Schistosoma japonicum Tetraspanins Recombinant protein Expression profile Diagnosis 

Notes

Funding information

This study was, in part or in whole, supported by The National Key Research and Development Program of China (2017YFD0501306-3), The National Natural Science Foundation of China (31472187 and 31672550), and The Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

436_2018_6063_MOESM1_ESM.xlsx (14 kb)
Supplementary Table 1 List of CD63 peptides identified by MALDI-TOF/TOF. (XLSX 13 kb)

References

  1. Cai P, Bu L, Wang J, Wang Z, Zhong X, Wang H (2008) Molecular characterization of Schistosoma japonicum tegument protein tetraspanin-2: sequence variation and possible implications for immune evasion. Biochem Biophys Res Commun 372(1):197–202CrossRefGoogle Scholar
  2. Cardoso FC, Macedo GC, Gava E, Kitten GT, Mati VL, de Melo AL, Caliari MV, Almeida GT, Venancio TM, Verjovski-Almeida S, Oliveira SC (2008) Schistosoma mansoni tegument protein Sm29 is able to induce a Th1-type of immune response and protection against parasite infection. PLoS Negl Trop Dis 2(10):e308CrossRefGoogle Scholar
  3. Chaiyadet S, Krueajampa W, Hipkaeo W, Plosan Y, Piratae S, Sotillo J, Smout M, Sripa B, Brindley PJ, Loukas A, Laha T (2017) Suppression of mRNAs encoding CD63 family tetraspanins from the carcinogenic liver fluke Opisthorchis viverrini results in distinct tegument phenotypes. Sci Rep 7(1):14342CrossRefGoogle Scholar
  4. Fan J, Brindley PJ (1998) Characterization of cDNAs encoding a new family of tetraspanins from schistosomes--the Sj25 family. Gene 219(1–2):1–8CrossRefGoogle Scholar
  5. Gryseels B, Polman K, Clerinx J, Kestens L (2006) Human schistosomiasis. Lancet 368(9541):1106–1118CrossRefGoogle Scholar
  6. Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 19:397–422CrossRefGoogle Scholar
  7. Higginbottom A, Takahashi Y, Bolling L, Coonrod SA, White JM, Partridge LJ, Monk PN (2003) Structural requirements for the inhibitory action of the CD9 large extracellular domain in sperm/oocyte binding and fusion. Biochem Biophys Res Commun 311(1):208–214CrossRefGoogle Scholar
  8. Ismail M, Botros S, Metwally A, William S, Farghally A, Tao L-F, Day TA, Bennett JL (1999) Resistance to praziquantel: direct evidence from Schistosoma mansoni isolated from Egyptian villagers. Am J Trop Med Hyg 60(6):932–935CrossRefGoogle Scholar
  9. Jiang Y, Xu X, Qing X, Pan W (2011) Identification and characterization of six novel tetraspanins from Schistosoma japonicum. Parasit Vectors 4:190CrossRefGoogle Scholar
  10. King CH, Dickman K, Tisch DJ (2005) Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 365(9470):1561–1569CrossRefGoogle Scholar
  11. Kovalenko OV, Yang X, Kolesnikova TV, Hemler ME (2004) Evidence for specific tetraspanin homodimers: inhibition of palmitoylation makes cysteine residues available for cross-linking. Biochem J 377(Pt 2):407–417CrossRefGoogle Scholar
  12. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5(2):150–163CrossRefGoogle Scholar
  13. Letunic I, Bork P (2018) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46(D1):D493–d496CrossRefGoogle Scholar
  14. Levy S, Shoham T (2005) The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol 5(2):136–148CrossRefGoogle Scholar
  15. Liu S, Cai P, Hou N, Piao X, Wang H, Hung T, Chen Q (2012) Genome-wide identification and characterization of a panel of house-keeping genes in Schistosoma japonicum. Mol Biochem Parasitol 182(1–2):75–82CrossRefGoogle Scholar
  16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408CrossRefGoogle Scholar
  17. Logozzi M, De Milito A, Lugini L, Borghi M, Calabro L, Spada M, Perdicchio M, Marino ML, Federici C, Iessi E, Brambilla D, Venturi G, Lozupone F, Santinami M, Huber V, Maio M, Rivoltini L, Fais S (2009) High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One 4(4):e5219CrossRefGoogle Scholar
  18. Lv C, Hong Y, Fu Z, Lu K, Cao X, Wang T, Zhu C, Li H, Xu R, Jia B, Han Q, Dou X, Shen Y, Zhang Z, Zai J, Feng J, Lin J (2016) Evaluation of recombinant multi-epitope proteins for diagnosis of goat schistosomiasis by enzyme-linked immunosorbent assay. Parasit Vectors 9:135CrossRefGoogle Scholar
  19. McWilliam HE, Driguez P, Piedrafita D, McManus DP, Meeusen EN (2014) Discovery of novel Schistosoma japonicum antigens using a targeted protein microarray approach. Parasit Vectors 7:290CrossRefGoogle Scholar
  20. Moller S, Croning MD, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17(7):646–653CrossRefGoogle Scholar
  21. Pasquier C, Hamodrakas SJ (1999) An hierarchical artificial neural network system for the classification of transmembrane proteins. Protein Eng 12(8):631–634CrossRefGoogle Scholar
  22. Stipp CS, Kolesnikova TV, Hemler ME (2003) Functional domains in tetraspanin proteins. Trends Biochem Sci 28(2):106–112CrossRefGoogle Scholar
  23. Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics Chapter 2:Unit 2:3Google Scholar
  24. Tran MH, Freitas TC, Cooper L, Gaze S, Gatton ML, Jones MK, Lovas E, Pearce EJ, Loukas A (2010) Suppression of mRNAs encoding tegument tetraspanins from Schistosoma mansoni results in impaired tegument turnover. PLoS Pathog 6(4):e1000840CrossRefGoogle Scholar
  25. Tran MH, Pearson MS, Bethony JM, Smyth DJ, Jones MK, Duke M, Don TA, McManus DP, Correa-Oliveira R, Loukas A (2006) Tetraspanins on the surface of Schistosoma mansoni are protective antigens against schistosomiasis. Nat Med 12(7):835–840CrossRefGoogle Scholar
  26. Wang XH, Wu XH, Zhou XN (2006) Bayesian estimation of community prevalences of Schistosoma japonicum infection in China. Int J Parasitol 36(8):895–902CrossRefGoogle Scholar
  27. Yoshioka Y, Konishi Y, Kosaka N, Katsuda T, Kato T, Ochiya T (2013) Comparative marker analysis of extracellular vesicles in different human cancer types. J Extracell Vesicles 2CrossRefGoogle Scholar
  28. Zhang W, Li J, Duke M, Jones MK, Kuang L, Zhang J, Blair D, Li Y, McManus DP (2011) Inconsistent protective efficacy and marked polymorphism limits the value of Schistosoma japonicum tetraspanin-2 as a vaccine target. PLoS Negl Trop Dis 5(5):e1166CrossRefGoogle Scholar
  29. Zhu L, Liu J, Dao J, Lu K, Li H, Gu H, Liu J, Feng X, Cheng G (2016) Molecular characterization of S. japonicum exosome-like vesicles reveals their regulatory roles in parasite-host interactions. Sci Rep 6:25885CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lihui Wang
    • 1
    • 2
  • Bikash Ranjan Giri
    • 1
  • Yongjun Chen
    • 1
  • Tianqi Xia
    • 1
  • Juntao Liu
    • 1
  • Huimin Li
    • 1
  • Jianjun Li
    • 2
  • Guofeng Cheng
    • 1
  1. 1.Shanghai Veterinary Research Institute, Key Laboratory of Animal Parasitology, Ministry of AgricultureChinese Academy of Agricultural SciencesShanghaiChina
  2. 2.Tianjin Agricultural UniversityTianjinChina

Personalised recommendations