Skip to main content

Advertisement

Log in

Behavior of two Leishmania infantum strains—evaluation of susceptibility to antimonials and expression of microRNAs in experimentally infected J774 macrophages and in BALB/c mice

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Strains of the same Leishmania parasite species, isolated from different host organisms, may exhibit unique infection profiles and induce a change in the expression of microRNAs among host macrophages and in model host mice. MicroRNAs (MiR) are endogenous molecules of about 22 nucleotides that are involved in many regulatory processes, including the vertebrate host immune response. In this respect, the infectivity and susceptibility to antimonials of two L. infantum strains, BH46, isolated from human, and OP46, isolated from symptomatic dog, were characterized in J774 macrophages and BALB/c mice. Parasite burden was assessed in the liver, spleen, and bone marrow using the serial limiting dilution technique. A higher parasite burden was observed in the spleen and bone marrow of animals infected with OP46 compared to BH46 strain. Our results also showed that OP46 was less susceptible to the antimonials. In addition, miR-122 and miR-155 expression was evaluated in the liver and J774 macrophages, and in spleens from infected animals, respectively. An increase was observed in the expression of miR-155 in J774 macrophages infected with both strains compared to uninfected cells, with a higher expression in cells infected with OP46. However, no difference in the expression of miR-122 and miR-155 was observed in the infected animals. Thus, this study shows that OP46 was more infective for mice, it caused a higher increase in miR-155 expression in infected macrophages and was less susceptible to the antimonials evaluated. These data suggest that alteration in miR-155 level likely plays a role in regulating the response to L. infantum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alvar J, Cañavate C, Molina R, Moreno J, Nieto J (2004) Canine leishmaniasis. Adv Parasitol 57:1–88

    Article  PubMed  Google Scholar 

  • Bandiera S, Pfeffer S, Baumert TF, Zeisel MB (2015) miR-122—a key factor and therapeutic target in liver disease. J Hepatol 62:448–457

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Ghosh J, Sen S, Guha R, Dhar R, Ghosh M, Datta S, Raychaudhury B, Naskar K, Haldar AK, Lal CS, Pandey K, Das VNR, Das P, Roy S (2009) Designing therapies against experimental visceral leishmaniasis by modulating the membrane fluidity of antigen-presenting cells. Infect Immun 77:2330–2342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bosquiroli LSS, Demarque DP, Rizk IS, Cunha MC, Marques MCS, Matos MFC, Kadri MCT, Carollo CA, Arruda CCP (2015) In vitro anti-Leishmania infantum activity of essential oil from Piper angustifolium. Rev Bras Farmacogn 25:124–128

    Article  CAS  Google Scholar 

  • Castro RA, Silva-Barcellos NM, Licio CSA, Souza JB, Souza-Testasicca MC, Ferreira FM, Batista MA, Silveira-Lemos D, Moura SL, Frézard F, Rezende AS (2014) Association of liposome-encapsulated trivalent antimonial with ascorbic acid: an effective and safe strategy in the treatment of experimental visceral leishmaniasis. PLoS One 9:e104055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi JW, Kang SM, Lee Y, Hong SH, Sanek NA, Young WS, Lee HJ (2013) MicroRNA profiling in the mouse hypothalamus reveals oxytocin-regulating microRNA. J Neurochem 126:331–337. https://doi.org/10.1111/jnc.12308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coura-Vital W, Marques MJ, Veloso VM, Roatt BM, Aguiar-Soares RD, Reis LE, Braga SL, Morais MH, Reis AB, Carneiro M (2011) Prevalence and factors associated with Leishmania infantum infection of dogs from an urban area of Brazil as identified by molecular methods. PLoS Negl Trop Dis 5:e1291. https://doi.org/10.1371/journal.pntd.0001291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19:111–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Da Fonseca Pires S, Fialho LC Jr, Silva SO, Melo MN, de Souza CC, Tafuri WL, Bruna Romero O, de Andrade HM (2014) Identification of virulence factors in Leishmania infantum strains by a proteomic approach. J Proteome Res 13:1860–1872

    Article  PubMed  CAS  Google Scholar 

  • Darabi S, Khaze V, Riazi-Rad F, Darabi H, Bahrami F, Ajdary S, Alimohammadian MH (2015) Leishmania major strains isolated from distinct endemic areas show diverse cytokine mRNA expression levels in C57BL/6 mice: toward selecting an ideal strain for the vaccine studies. Cytokine 76:303–308

    Article  PubMed  CAS  Google Scholar 

  • Demicheli C, Orchoa R, Lula IS, Gozzo FC, Eberlin MN, Frézard F (2003) Pentavalent organoantimonial derivatives: two simple and efficient synthetic methods for meglumine antimonate. Appl Organomet Chem 17:226–231

    Article  CAS  Google Scholar 

  • Engwerda CR, Ato M, Kaye PM (2004) Macrophages, pathology and parasite persistence in experimental visceral leishmaniasis. Trends Parasitol 20:524–530

    Article  PubMed  CAS  Google Scholar 

  • Eren RO, Reverte M, Rossi M, Hartley MA, Castiglioni P, Prevel F, Martin R, Desponds C, Lye LF, Drexler SK, Reith W, Beverley SM, Ronet C, Fasel N (2016) Mammalian innate immune response to a Leishmania-resident RNA virus increases macrophage survival to promote parasite persistence. Cell Host Microbe 20:318–328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferreira FM, Castro RA, Batista MA, Rossi FM, Silveira-Lemos D, Frézard F, Moura SA, Rezende AS (2014) Association of water extract of green propolis and liposomal meglumine antimoniate in the treatment of experimental visceral leishmaniasis. Parasitol Res 113:533–543

    Article  PubMed  Google Scholar 

  • Georgantas RW 3rd, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S, Calin GA, Croce CM, Civin CI (2007) CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci U S A 104:2750–2755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geraci NS, Tan JC, Mcdowell MA (2015) Characterization of microRNA expression profiles in Leishmania infected human phagocytes. Parasite Immunol 37:43–51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghosh J, Bose M, Roy S, Bhattacharyya SN (2013) Leishmania donovani targets Dicer1 to downregulate miR-122, lower serum cholesterol, and facilitate murine liver infection. Cell Host Microbe 13:277–788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gómez Pérez V, García-Hernandez R, Corpas-López V, Tomás AM, Martín-Sanchez J, Castanys S, Gamarro F (2016) Decreased antimony uptake and overexpression of genes of thiol metabolism are associated with drug resistance in a canine isolate of Leishmania infantum. Int J Parasitol Drugs Drug Resist 6:133–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    Article  PubMed  CAS  Google Scholar 

  • Jablonski KA, Gaudet AD, Amici SA, Popovich PG, Guerau-de-Arellano M (2016) Control of the inflammatory macrophage transcriptional signature by miR-155. PLoS One 22:e0159724. https://doi.org/10.1371/journal.pone.0159724

    Article  CAS  Google Scholar 

  • Kelada S, Sethupathy P, Okoye IS, Kistasis E, Czieso S, White SD, Chou D, Martens C, Ricklefs SM, Virtaneva K, Sturdevant DE, Porcella SF, Belkaid Y, Wynn TA, Wilson MS (2013) miR-182 and miR-10a are key regulators of Treg specialisation and stability during Schistosoma and Leishmania-associated inflammation. PLoS Pathog 9:e1003451. https://doi.org/10.1371/journal.ppat.1003451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lainson R, Shaw JJ (1978) Epidemiology and ecology of leishmaniasis in Latin-America. Nature 273:595–600

    Article  PubMed  CAS  Google Scholar 

  • Lal CS, Kumar A, Kumar S, Pandey K, Kumar N, Bimal S, Sinha PK, Das P (2007) Hypocholesterolemia and increased triglyceride in pediatric visceral leishmaniasis. Clin Chim Acta Neth 382:151–153

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lukeš A, Mauricio IL, Schönian G, Dujardin JC, Soteriadou K, Dedet JP, Kuhls K, Tintaya KW, Jirků M, Chocholová E, Haralambous C, Pratlong F, Oborník M, Horák A, Ayala FJ, Miles MA (2007) Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proc Natl Acad Sci U S A 104:9375–9380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maia C, Nunes M, Marques M, Henriques S, Rolão N, Campino L (2013) In vitro drug susceptibility of Leishmania infantum isolated from humans and dogs. Exp Parasitol 135:36–41

    Article  PubMed  CAS  Google Scholar 

  • Marques-Da-Silva EA, Coelho EA, Gomes DC, Vilela MC, Masioli CZ, Tavares CA, Fernandes AP, Afonso LC, Rezende SA (2005) Intramuscular immunization with p36(LACK) DNA vaccine induces IFN-gamma production but does not protect BALB/c mice against Leishmania chagasi intravenous challenge. Parasitol Res 98:67–74

    Article  PubMed  Google Scholar 

  • Mashima R (2015) Physiological roles of miR-155. Immunology 145:323–333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ministério da Saúde (2008) Brazil. PORTARIA INTERMINISTERIAL N° 1.426, DE 11 DE JULHO DE 2008. Available from: http://bvsms.saude.gov.br/bvs/saudelegis/gm/2008/pri1426_11_07_2008.html

  • Mishra PK, Tyagi N, Kundu S, Tyagi SC (2009) MicroRNAs are involved in homocysteine-induced cardiac remodeling. Cell Biochem Biophys 55:153–162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moreira N, Vitoriano-Souza J, Roatt BM, Vieira PMA, Ker HG, Cardoso JMO, Giunchetti RC, Carneiro CM, de Lana M, Reis AB (2012) Parasite burden in hamsters infected with two different strains of Leishmania (Leishmania) infantum: “Leishman Donovan units” versus real-time PCR. PLoS One 7:e47907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moreira N, Vitoriano-Souza J, Roatt BM, Vieira PMA, Coura-Vital W, Cardoso JM, Rezende MT, Ker HG, Giunchetti RC, Carneiro CM, Reis AB (2016) Clinical, hematological and biochemical alterations in hamster (Mesocricetus auratus) experimentally infected with Leishmania infantum through different routes of inoculation. Parasit Vectors 9:181. https://doi.org/10.1186/s13071-016-1464-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  • Murray HW (2001) Clinical and experimental advances in treatment of visceral leishmaniasis. Antimicrob Agents Chemother 45:2185–2197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muxel SM, Laranjeira-Silva MF, Zampieri RA, Floeter-Winter LM (2017) Leishmania (Leishmania) amazonensis induces macrophage miR-294 and miR-721 expression and modulates infection by targeting NOS2 and L-arginine metabolism. Sci Rep 7:44141. https://doi.org/10.1038/srep44141

    Article  PubMed  PubMed Central  Google Scholar 

  • O'Connell RM, Kahn D, Gibson WS, Round JL, Scholz RL, Chaudhuri AA, Kahn ME, Rao DS, Baltimore D (2010) MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33:607–619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin Y, Wang Q, Zhou W, Duan Y, Gao Q (2016) Inhibition of IFN-gamma-induced nitric oxide dependent antimycobacterial activity by miR-155 and C/EBPbeta. Int J Mol Sci 17:535. https://doi.org/10.3390/ijms17040535.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reis LES, Fortes de Brito RC, Cardoso JMO, Mathias FAS, Aguiar Soares RDO, Carneiro CM, de Abreu Vieira PM, Ramos GS, Frézard FJG, Roatt BM, Reis AB (2017) Mixed formulation of conventional and pegylated meglumine antimoniate-containing liposomes reduces inflammatory process and parasite burden in Leishmania infantum-infected BALB/c mice. Antimicrob Agents Chemother 61:e00962–e00917. https://doi.org/10.1128/AAC.00962-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA, Vetrie D, Okkenhaug K, Enright AJ, Dougan G, Turner M, Bradley A (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316:608–611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Serafim TD, Malafaia G, Silva ME, Pedrosa ML, Rezende SA (2010) Immune response to Leishmania (Leishmania) chagasi infection is reduced in malnourished BALB/c mice. Mem Inst Oswaldo Cruz 105:811–817

    Article  PubMed  Google Scholar 

  • Sieuwerts AM, Klijn JG, Peters HA, Foekens JA (1995) The MTT tetrazolium salt assay scrutinized: how to use this assay reliably to measure metabolic activity of cell cultures in vitro for the assessment of growth characteristics, IC50-values and cell survival. Eur J Clin Chem Clin Biochem 33:813–823

    PubMed  CAS  Google Scholar 

  • Tafuri WL, Michalick MS, Dias M, Genaro O, Leite VH, Barbosa AJ, Bambirra EA, da Costa CA, Melo MN, Mayrink W (1989) Optical and electron microscopic study of the kidney of dogs naturally and experimentally infected with Leishmania (Leishmania) chagasi. Rev Inst Med Trop Sao Paulo 31:139–145

    Article  PubMed  CAS  Google Scholar 

  • Thakral S, Ghoshal K (2015) miR-122 is a unique molecule with great potential in diagnosis, prognosis of liver disease, and therapy both as miRNA mimic and antimir. Curr Gene Ther 15:142–150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Titus RG, Marchand M, Boon T, Louis JA (1985) A limiting dilution assay for quantifying Leishmania major in tissues of infected mice. Parasite Immunol 7:545–555

    Article  PubMed  CAS  Google Scholar 

  • Valadares DG, Duarte MC, Oliveira JS, Chávez-Fumagalli MA, Martins VT, Costa LE, Leite JP, Santoro MM, Régis WC, Tavares CA, Coelho EA (2011) Leishmanicidal activity of the Agaricus blazei Murill in different leishmania species. Parasitol Int 60:357–363

    Article  PubMed  Google Scholar 

  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the assistance provided by Dr. Rodrigo Pedro Pinto Soares from Centro de Pesquisa René Rachou (FIOCRUZ, Minas Gerais, Brazil) and Dr. Alexandre Barbosa Reis from the Laboratório de Imunopatologia at NUPEB/UFOP. We thank also the Centro de Ciência Animal-CCA/UFOP for the animals, Dra. Angélica Lima for allowing the use of the Laboratório de Bioquímica e Imunologia Clínicas and Laboratório Piloto de Análises Clínicas (LAPAC/UFOP) and Dr. Frederic Frezard from Federal University of Minas Gerais for kindly supplying the meglumine antimoniate. Thanks also to the graduate student Douglas Dophine from the Laboratory of Clinical Research at CiPHARMA/UFOP for the help with sheet reading.

Funding

The CNPq, FAPEMIG, and Rede Mineira de Bioterismo financially supported this study. This work was supported by the Federal University of Ouro Preto (UFOP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Aparecida Rezende.

Ethics declarations

The procedures adopted in this study were in accordance with the National Council on Animal Experiments and Control (CONCEA-MCT Brazil) guidelines and approved by the Ethics Committee on the Use of Animals of the Federal University of Ouro Preto, under protocol number 2015/49.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Section Editor: Sarah Hendrickx

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, S.C., Silva, D.F., Almeida, T.C. et al. Behavior of two Leishmania infantum strains—evaluation of susceptibility to antimonials and expression of microRNAs in experimentally infected J774 macrophages and in BALB/c mice. Parasitol Res 117, 2881–2893 (2018). https://doi.org/10.1007/s00436-018-5979-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-5979-3

Keywords

Navigation