Advertisement

Parasitology Research

, Volume 117, Issue 8, pp 2569–2576 | Cite as

First report of Euryhelmis parasites (Trematoda, Heterophyidae) in Africa: conservation implications for endemic amphibians

  • Jesus Díaz-Rodríguez
  • David Donaire-Barroso
  • Michael J. Jowers
Original Paper

Abstract

In this study, we report, through molecular identification, the first African records of a digenean trematode parasite of the genus Euryhelmis. We recovered metacercariae encysted in an anuran, the endemic Moroccan painted frog (Discoglossus scovazzi), and a vulnerable caudate, the North African fire salamander (Salamandra algira), from four localities in North Africa (Morocco). Our records go back to the past century and have been confirmed in successive fieldwork seasons thereafter. Metacercarial stages of these parasites require amphibians as the last intermediate host, but the exact identity of the primary hosts and predators of the infected animals in Africa remain unknown. Our searches with basic local alignment search tool (BLAST) from Genbank revealed that hosts were infected by parasites of Euryhelmis costaricensis, which showed almost the same genetic identity (with only one substitution) to previous reports from Costa Rica and Japan, suggesting a recent introduction in Morocco. We proceed to discuss the likely role of introduced mustelids as the potential definitive hosts of trematode adults. Under this assumption, we conclude that the infestation of Discoglossus scovazzi and Salamandra algira might pose a risk to these threatened species.

Keywords

Metacercaria Euryhelmis Salamandra algira Discoglossus scovazzi Morocco Amphibian conservation 

Notes

Acknowledgements

We are grateful to Tahar Slimani and El Hassan El Mouden for their collaboration.

Permits

Joint research project of the Natural History Museum of Braunschweig and the University of Marrakech (BMBF:01DH13015) and former Orde du mission issued to (DD-B.) by the University of Marrakesh Cadi Ayyad.

Funding

This project was funded by the International Collaborative Research Grant by the National Institute of Ecology (South Korea) to MJJ and personal funds from DD-B.

References

  1. Alford RA, Dixon PM, Pechmann JH (2001) Ecology: global amphibian population declines. Nature 412:499–500CrossRefPubMedGoogle Scholar
  2. Anderson GA, Pratt I (1965) Cercaria and first intermediate host of Euryhelmis squamula. J Parasitol 51:13–15CrossRefPubMedGoogle Scholar
  3. Bakhoum AJS, Bâ CT, Fournier-Chambrillon C, Torres J, Fournier P, Miquel J (2009) Spermatozoon ultrastructure of Euryhelmis squamula Rudolphi, 1819 (Digenea, Opisthorchioidea, Heterophyidae), an intestinal parasite of Mustela vison (Carnivora, Mustelidae). Rev Iber-Latinoam Parasitol 1:37–45Google Scholar
  4. Beukema W, De Pous P, Donaire D, Escoriza D, Bogaerts S, Toxopeus AG, De Bie CAJM, Roca J, Carranza S (2010) Biogeography and contemporary climatic differentiation among Moroccan Salamandra algira. Biol J Linn Soc 101:626–641CrossRefGoogle Scholar
  5. Blas-Aritio L (1970) Vida y Costumbres de los Mustélidos Españoles, 1st edn. Servicio de Pesca Continental, Caza y Parques Nacionales, Ministerio de Agricultura, MadridGoogle Scholar
  6. Bosch J, Martinez-Solano I (2006) Chytrid fungus infection related to unusual mortalities of Salamandra salamandra and Bufo bufo in Peñalara National Park, Spain. Oryx 40:84–89CrossRefGoogle Scholar
  7. Bowman DD, Hendrix CM, Lindsay DS, Barr SC (2008) Feline clinical parasitology. John Wiley & Sons. Iowa University Press, IowaGoogle Scholar
  8. Bray RA, Gibson DI, Jones A (2008) Keys to the Trematoda, Vol 3. CAB International and Natural History Museum, LondonCrossRefGoogle Scholar
  9. Brenes RR, Arroyo G, Jimènez-Quiròs O (1960) Helmintos de la República de Costa Rica XVIII. Una nueva especie de Euryhelmis (Trematoda: Heterophyidae), parásito de Mustela frenata costaricensis. Rev Biol Trop 8:247–251.  https://doi.org/10.15517/rbt.v8i2.30303 CrossRefGoogle Scholar
  10. Broyer J, Aulagnier S, Destre R (1988) La loutre, Lutra lutra angustifrons (Lataste, 1885) au Maroc. Mammalia 52:361–370CrossRefGoogle Scholar
  11. Clavero M, Prenda J, Delibes M (2003) Trophic diversity of the otter (Lutra lutra L.) in temperate and Mediterranean freshwater habitats. J Biogeogr 30:761–769CrossRefGoogle Scholar
  12. Clavero M, Prenda J, Delibes M (2005) Amphibian and reptile consumption by otters (Lutra lutra) in a coastal area in southern Iberian Peninsula. Herpetol J 15:125–131Google Scholar
  13. Collins JP, Storfer A (2003) Global amphibian declines: sorting the hypotheses. Divers Distrib 9:89–98CrossRefGoogle Scholar
  14. Combes C, Bartoli P, Theron A (2002) Trematode transmission strategies. In: Lewis EE, Campbell JF, Sukhdeo MWK (eds) The behavioural ecology of parasites. CAB International and Natural History Museum, Wallingford, pp 1–12Google Scholar
  15. Daszak P, Berger L, Cunningham AA, Hyatt AD, Green DE, Speare R (1999) Emerging infectious diseases and amphibian population declines. Emerg Infect Dis 5:735–748CrossRefPubMedPubMedCentralGoogle Scholar
  16. Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Divers Distrib 9:141–150CrossRefGoogle Scholar
  17. De Castro F, Bolker B (2005) Mechanisms of disease-induced extinction. Ecol Lett 8:117–126CrossRefGoogle Scholar
  18. Dinis M, Velo-Antón G (2017) How little do we know about the reproductive mode in the north African salamander, Salamandra algira? Pueriparity in divergent mitochondrial lineages of S. a. tingitana. Amphibia-Reptilia 38:540–546CrossRefGoogle Scholar
  19. Donaire D, Bogaerts S (2016) Sobre los límites de Salamandra algira tingitana Donaire-Barroso & Bogaerts, 2003 vivípara y consideraciones ecológicas. Butll Soc Cat Herp 23:64–70 https://soccatherp.files.wordpress.com/2016/02/salamandra-algira-tingitana-viviparc3adsmo-larviparc3adsmo.pdf. Accessed 10 April 2018Google Scholar
  20. Duffus AL, Cunningham AA (2010) Major disease threats to European amphibians. Herpetol J 20:117–127Google Scholar
  21. Fragoso S, Santos-Reis M (2000) Utilização dos recursos tróficos pela doninha no Parque Natural das Serras de Aire e Candeeiros. Rev Biol 18:23–32Google Scholar
  22. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224CrossRefPubMedGoogle Scholar
  23. Grabda-Kazubska B (1980) Euryhelmis zelleri sp. n. and Euryhelmis squamula Rudolphi, 1819 (Trematoda, Heterophyidae), metacercariae from Rana temporaria L., from the Babia Gora National Park, Poland. Acta Parasitol Pol 26:115–128 https://www.cabdirect.org/cabdirect/abstract/19800877445 Accessed 10 April 2018Google Scholar
  24. Hamann MI, González CE (2009) Larval digenetic trematodes in tadpoles of six amphibian species from Northeastern Argentina. J Parasitol 95:623–628CrossRefPubMedGoogle Scholar
  25. Heneberg P, Faltynkova A, Bizos J, Mala M, Ziak J, Literak I (2015) Intermediate hosts of the trematode Collyriclum faba (Plagiochiida: Collyriclidae) identified by an integrated morphological and genetic approach. Parasit Vectors 8:646CrossRefGoogle Scholar
  26. Hillis DM, Moritz C, Mable BK (1996) Molecular systematics. 2nd edn. Sinauer Associates, Inc. SunderlandGoogle Scholar
  27. Hoberg EP, Aubry KB, Brittell JD (1990) Helminth parasitism in martens (Martes americana) and ermines (Mustela erminea) from Washington, with comments on the distribution of Trichinella spiralis. J Wild Dis 26:447–452CrossRefGoogle Scholar
  28. Hopkins WA (2007) Amphibians as models for studying environmental change. ILAR J 48:270–277CrossRefPubMedGoogle Scholar
  29. Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000) Quantitative evidence for global amphibian population declines. Nature 404:752–755CrossRefPubMedGoogle Scholar
  30. Jiménez MS (2003) Contribución al conocimiento de la parasitofauna de Rana perezi Seoane, 1885 (Amphibia:Ranidae) de la provincia de Ávila. Tesis doctoral, Facultad Complutense de MadridGoogle Scholar
  31. Johnson PT, Lunde KB (2005) Parasite infection and limb malformations: a growing problem in amphibian conservation. In: Lannoo M (ed) Amphibian declines: the conservation status of United States species. University of California Press, Berkeley, pp 124–138CrossRefGoogle Scholar
  32. Johnson PT, Sutherland DR, Kinsella JM, Lunde KB (2004) Review of the trematode genus Ribeiroia (Psilostomidae): ecology, life history and pathogenesis with special emphasis on the amphibian malformation problem. Adv Parasitol 57:191–253CrossRefPubMedGoogle Scholar
  33. Kishimoto R (2005) Invasion of an alien species, American mink (Mustela vison), into the upper area of Chikuma river. Bull Nagano Environ Res Inst 1:65–68 (in Japanese)Google Scholar
  34. Knutson MG, Richardson WB, Weick S (2002) Farm ponds as critical habitats for native amphibians: Field Season 2001 Interim Report. USGS-Upper Midwest Environmental Sciences Center. La Crosse, Wisconsin https://umesc.usgs.gov/documents/reports/2001/interim2_report.pdf Accessed 10 April 2018
  35. Larkin MA, Backshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinfomatics 23:2947–2948CrossRefGoogle Scholar
  36. Lebarbenchon C, Poitevin F, Arnal V, Montgelard C (2010) Phylogeography of the weasel (Mustela nivalis) in the western-Palaearctic region: combined effects of glacial events and human movements. Heredity 105:449–462CrossRefPubMedGoogle Scholar
  37. Libois R, Fareh M, Brahimi A, Rosoux R (2015) Régime alimentaire et stratégie trophique saisonnière de la Loutre d’Europe, Lutra lutra, dans le Moyen Atlas (Maroc). Rev Ecol (Terre Vie) 70:314–327 http://hdl.handle.net/2042/56926 Accessed 10 April 2018Google Scholar
  38. Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, Collins JP (2006) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. PNAS 103:3165–3170CrossRefPubMedGoogle Scholar
  39. Martel A, Blooi M, Adriaensen C, Van Rooij P, Beukema W, Fisher MC, Lips KR (2014) Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346:630–631CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mata-Lopez R, Garcia-Prieto L, Leon-Regagnon V (2010) Helminths of the American bullfrog, Lithobates catesbeianus (Shaw, 1802), from Pawnee Lake, Lancaster, Nebraska, USA with a checklist of its helminth parasites. Zootaxa 2544:1–53 http://www.mapress.com/j/zt/article/view/9201 Accessed 10 April 2018Google Scholar
  41. McDonald RA, Lariviere S (2001) Diseases and pathogens of Mustela spp, with special reference to the biological control of introduced stoat Mustela erminea populations in New Zealand. J R Soc N Z 31:721–744CrossRefGoogle Scholar
  42. McDonald KR, Mendez D, Müller R, Freeman AB, Speare R (2005) Decline in the prevalence of chytridiomycosis in frog populations in North Queensland, Australia. Pac Conserv Biol 11:114–120CrossRefGoogle Scholar
  43. Miraldo A, Li S, Borregaard MK, Flórez-Rodríguez A, Gopalakrishnan S, Rizvanovic M, Nogués-Bravo D (2016) An Anthropocene map of genetic diversity. Science 353:1532–1535CrossRefPubMedGoogle Scholar
  44. O'Hanlon SJ, Rieux A, Farrer RA, Rosa GM, Waldman B, Bataille A, Kosch TA, Murray KA, Brankovics B, Fumagalli M, Martin MD, Wales N, Alvarado-Rybak M, Bates KA, Berger L, Böll S, Brookes L, Clare F, Courtois EA, Cunningham AA, Doherty-Bone TM, Ghosh P, Gower DJ, Hintz WE, Höglund J, Jenkinson TS, Lin CF, Laurila A, Loyau A, Martel A, Meurling S, Miaud C, Minting P, Pasmans F, Schmeller DS, Schmidt BR, Shelton JMG, Skerratt LF, Smith F, Soto-Azat C, Spagnoletti M, Tessa G, Toledo LF, Valenzuela-Sánchez A, Verster R, Vörös J, Webb R, Wierzbicki C, Wombwell E, Zamudio KR, Aanensen DM, James TY, Gilbert MTP, Weldon C, Bosch J, Balloux F, Garner TWJ, Fisher MC (2018) Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360:621–627.  https://doi.org/10.1126/science.aar1965 CrossRefPubMedGoogle Scholar
  45. Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MP, Foster PN, Ron SR (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167CrossRefPubMedGoogle Scholar
  46. Rachowicz LJ, Hero J, Alford RA, Taylor JW, Morgan JA, Vredenburg VT, Collins JP, Briggs CJ (2005) The novel and endemic pathogen hypotheses: competing explanations for the origin of emerging infectious diseases of wildlife. Conserv Biol 19:1441–1448CrossRefGoogle Scholar
  47. Rachowicz LJ, Knapp RA, Morgan JA, Stice MJ, Vredenburg VT, Parker JM, Briggs CJ (2006) Emerging infectious disease as a proximate cause of amphibian mass mortality. Ecology 87:1671–1683CrossRefPubMedGoogle Scholar
  48. Routtu J, Grunberg D, Izhar R, Dagan Y, Guttel Y, Ucko M, Ben-Ami F (2014) Selective and universal primers for trematode barcoding in freshwater snails. Parasitol Res 113:2535–2540CrossRefPubMedGoogle Scholar
  49. Sato H, Inaba T, Ihama Y, Kamiya H (1999) Parasitological survey on wild carnivora in northwestern Tohoku, Japan. J Vet Med Sci 61:1023–1026CrossRefPubMedGoogle Scholar
  50. Sato H, Ihara S, Inaba O, Une Y (2010) Identification of Euryhelmis costaricensis metacercariae in the skin of Tohoku hynobiid salamanders (Hynobius lichenatus), northeastern Honshu, Japan. J Wildl Dis 46:832–842CrossRefPubMedGoogle Scholar
  51. Schotthoefer AM, Cole RA, Beasley VR (2003) Relationship of tadpole stage to location of echinostome cercariae encystment and the consequences for tadpole survival. J Parasitol 89:475–482CrossRefPubMedGoogle Scholar
  52. Sheffield SR, King CM (1994) Mustela nivalis. Mamm Species 454:1–10CrossRefGoogle Scholar
  53. Shimatani Y, Fukue Y, Kishimoto R, Masuda R (2010) Genetic variation and population structure of the feral American mink (Neovison vison) in Nagano, Japan, revealed by microsatellite analysis. Mammal Study 35:1–7.  https://doi.org/10.3106/041.035.0101 CrossRefGoogle Scholar
  54. Simon MJ (1972) Euryhelmis cotti N. Sp. (Trematoda: Heterophyidae) with observations on its life cycle. Dissertation and Theses, Paper 960. Portland State University.  https://doi.org/10.15760/etd.960
  55. Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Kenyon N (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125–134CrossRefGoogle Scholar
  56. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues AS, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786CrossRefPubMedPubMedCentralGoogle Scholar
  57. Thévenot M, Aulagnier S (2006) Mise à jour de la liste des mammifères sauvages du Maroc. Janvier 2006. Go-South Bull 3:6–9 http://go-south.org/wp-content/uploads/2014/08/go-south_bull_3_6-91.pdf Accessed 10 April 2018Google Scholar
  58. Torres J, Miquel J, Casanova JC, Ribas A, Feliu C, Morand S (2006) Endoparasite species richness of Iberian carnivores: influences of host density and range distribution. Biodivers Conserv 15:4619–4632CrossRefGoogle Scholar
  59. Torres J, Miquel J, Fournier P, Fournier-Chambrillon C, Liberge M, Fons R, Feliu C (2008) Helminth communities of the autochthonous mustelids Mustela lutreola and M. putorius and the introduced Mustela vison in south-western France. J Helminthol 82:349–355CrossRefPubMedGoogle Scholar
  60. Vences M, De Pous P, Nicolas V, Díaz-Rodríguez J, Donaire D, Hugemann K, Hauswaldt JS, Amat F, Barnestein JAM, Bogaerts S, Bouazza A, Carranza S, Galán P, Gonzalez de la Vega JP, Joger U, Lansari A, El Mouden H, Ohler A, Sanuy D, Slimani T, Tejedo M (2014) New insights on phylogeography and distribution of painted frogs (Discoglossus) in northern Africa and the Iberian peninsula. Amphibia-Reptilia 35:305–320.  https://doi.org/10.1163/15685381-00002954 CrossRefGoogle Scholar
  61. Waikagul J, Thaekham U (2014) Approaches to research on the systematics of fish-borne trematodes. Academic Press. 67–69Google Scholar
  62. Walton AC (1949) Parasites of the Ranidae (Amphibia). Trans Am Microsc Soc JSTOR 68:49–54.  https://doi.org/10.2307/3223205 CrossRefGoogle Scholar
  63. Weldon C, Du Preez LH, Hyatt AD, Muller R, Speare R (2004) Origin of the amphibian chytrid fungus. Emerg Infect Dis 10:2100–2105CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wolsan M (1993) Mustela putorius Linnaeus, 1758–Waldiltis, Europäischer Iltis, Itlis. In: Stubbe M, Krapp F (eds) Handbuch der Säugetiere Europeas. Band 5/II, Carnivora 2 (Fissipedia): 699–769. Aula Verlag, WiesbadenGoogle Scholar
  65. Wongsawad C, Rojtinnakorn J, Wongsawad P, Rojanapaibul A, Marayong T, Suwattanacoupt S, Sirikanchana P, Sey O, Jadhav BV (2004) Helminths of vertebrates from Mae Sa Stream, Chiang Mai, Thailand. Southeast Asian J Trop Med Public Health 35:140–146 http://www.tm.mahidol.ac.th/seameo/2004-35-suppl-1/25-140.pdf Accessed 10 April 2018Google Scholar
  66. Yanchev Y (1987) The morphology, taxonomy and distribution of Euryhelmis squamula Rudolphi 1819 (Trematoda, Heterophiidae) in some Mustelidae in Bulgaria. Khelmintologiya 23:50–58Google Scholar
  67. Young BE, Lips KR, Reaser JK, Ibanez R, Salas AW, Cedeño JR, Muñoz A (2001) Population declines and priorities for amphibian conservation in Latin America. Conserv Biol 15:1213–1223CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jesus Díaz-Rodríguez
    • 1
  • David Donaire-Barroso
    • 2
  • Michael J. Jowers
    • 3
    • 4
  1. 1.CEI CamBio (Campus de Excelencia Internacional de Medio Ambiente, Biodiversidad y Cambio Global)Universidad Pablo de OlavideSevillaSpain
  2. 2.Calle Mar EgeoCádizSpain
  3. 3.CIBIO/InBIO (Centro de Investigação em Biodiversidade e Recursos Genéticos)Universidade do PortoVairãoPortugal
  4. 4.National Institute of EcologySeocheon-gunSouth Korea

Personalised recommendations