Advertisement

Parasitology Research

, Volume 117, Issue 7, pp 2187–2199 | Cite as

Detecting local transmission of avian malaria and related haemosporidian parasites (Apicomlexa, Haemosporida) at a Special Protection Area of Natura 2000 network

  • Dimitar Dimitrov
  • Mihaela Ilieva
  • Karina Ivanova
  • Vojtěch Brlík
  • Pavel Zehtindjiev
Original Paper

Abstract

Avian haemosporidian parasites (Apicomplexa, Haemosporida) are widespread pathogens that cause malaria (Plasmodium spp.) and other haemosporidioses (Haemoproteus spp. and Leucocytozoon spp.) in birds. The Special Protection Area Durankulak Lake (SPA DL) is a coastal lake in northeast Bulgaria, part of the Natura 2000 network that was declared as important area for wintering, breeding and migratory birds. Despite a number of conservation efforts outlined for the SPAs of Natura 2000 network, the potential threats and influences of haemosporidians and other parasites on occurring birds were not considered. In the present study, we aim to investigate the richness of haemosporidian parasites in birds captured in the protected area and to report the parasite species/DNA lineages that undergo local transmission in the region. We used both microscopic examination and PCR-based methods to diagnose haemosporidian infections in juvenile (captured in the year of hatching) and adult birds. The overall prevalence of haemosporidian parasites was significantly higher in the adult birds compared to juveniles. We identified five out of 21 recorded cytochrome b (cyt b) parasite lineages that are locally transmitted in the SPA DL (one of the genus Haemoproteus Kruse, 1890 and four of genus Plasmodium Marchiafava and Celli, 1885): cyt b lineages hRW2 of Haemoproteus belopolskyi, pSGS1 of Plasmodium relictum, pCOLL1, pYWT4 and pPADOM01 of Plasmodium (Haemamoeba) spp. It is likely that the majority of the parasites with local transmission are widespread host generalists and that host exchange is rather frequent among the birds inhabiting SPA DL.

Keywords

Haemoproteus Plasmodium Durankulak Lake New host records Host exchange 

Notes

Acknowledgements

We are thankful to Strahil Peev, Martin P. Marinov, Boris Prudík, Christoffer Sjöholm and Martin Sládeček for their help with the fieldwork. Anelyia Bobeva is acknowledged for her help in the laboratory work. We are grateful to both anonymous reviewers for valuable comments and suggestions on the earlier manuscript. We thank to Dr. Nicholas Clark for proofreading the manuscript and correcting the English. The study was financially supported by the Program for career development of young scientists of Bulgarian Academy of Sciences. VB was supported by the Czech Science Foundation (project No. 13-06451S). PZ, MI and KI were supported by the Bulgarian National Science Foundation grant No. DN01/6.

References

  1. Arai M, Billker O, Morris HR, Panico M, Delcroix M, Dixon D, Ley SV, Sinden RE (2001) Both mosquito-derived xanthurenic acid and a host blood-derived factor regulate gametogenesis of Plasmodium in the midgut of the mosquito. Mol Biochem Parasitol 116:17–24CrossRefPubMedGoogle Scholar
  2. Atkinson CT, LaPointe DA (2009) Introduced avian diseases, climate change, and the future of Hawaiian honeycreepers. J Avian Med Surg 23:53–63.  https://doi.org/10.1647/2008-059.1 CrossRefPubMedGoogle Scholar
  3. Atkinson CT, Samuel MD (2010) Avian malaria Plasmodium relictum in native Hawaiian forest birds : epizootiology and demographic impacts on ` apapane Himatione sanguinea. J Avian Biol 41:357–366.  https://doi.org/10.1111/j.1600-048X.2009.04915.x CrossRefGoogle Scholar
  4. Atkinson CT, Thomas NJ, Hunter DB (2008) Parasitic diseases of wild birds. Wiley-Blackwell, Oxford, UKCrossRefGoogle Scholar
  5. Bairlein F (1995) Manual of field methods. European-African Songbird Migration Network 32Google Scholar
  6. Beadell JS, Gering E, Austin J, Dumbacher JP, Peirce MA, Pratt TK, Atkinson CT, Fleischer RC (2004) Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region. Mol Ecol 13:3829–3844.  https://doi.org/10.1111/j.1365-294X.2004.02363.x CrossRefPubMedGoogle Scholar
  7. Bensch S, Stjernman M, Hasselquist D, Ostman O, Hansson B, Westerdahl H, Pinheiro RT (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc B Biol Sci 267:1583–1589.  https://doi.org/10.1098/rspb.2000.1181 CrossRefGoogle Scholar
  8. Bensch S, Waldenström J, Jonzén N, Westerdahl H, Hansson B, Sejberg D, Hasselquist D (2007) Temporal dynamics and diversity of avian malaria parasites in a single host species. J Anim Ecol 76:112–122.  https://doi.org/10.1111/j.1365-2656.2006.01176.x CrossRefPubMedGoogle Scholar
  9. Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9:1353–1358.  https://doi.org/10.1111/j.1755-0998.2009.02692.x CrossRefPubMedGoogle Scholar
  10. Bernotienė R, Palinauskas V, Iezhova T, Murauskaitė D, Valkiūnas G (2016) Avian haemosporidian parasites (Haemosporida): a comparative analysis of different polymerase chain reaction assays in detection of mixed infections. Exp Parasitol 163:31–37.  https://doi.org/10.1016/j.exppara.2016.01.009 CrossRefPubMedGoogle Scholar
  11. Bonneaud C, Pérez-Tris J, Federici P, Chastel O, Sorci G (2006) Major histocompatibility alleles associated with local resistance to malaria in a passerine. Evolution 60:383–389CrossRefPubMedGoogle Scholar
  12. BWPi (2006) The birds of the western Palearctic interactive, 2006 Upgra. DVD Birdguides, ShrewsburyGoogle Scholar
  13. Cannell BL, Krasnec KV, Campbell K, Jones HI, Miller RD, Stephens N (2013) The pathology and pathogenicity of a novel Haemoproteus spp. infection in wild little penguins (Eudyptula minor). Vet Parasitol 197:74–84.  https://doi.org/10.1016/j.vetpar.2013.04.025 CrossRefPubMedGoogle Scholar
  14. Castro I, Howe L, Tompkins DM, Barraclough RK, Slaney D (2011) Presence and seasonal prevalence of Plasmodium spp. in a rare endemic New Zealand passerine (tieke or Saddleback, Philesturnus carunculatus). J Wildl Dis 47:860–867CrossRefPubMedGoogle Scholar
  15. Clark NJ, Clegg SM, Sam K, Goulding W, Koane B, Wells K (2018) Climate, host phylogeny and the connectivity of host communities govern regional parasite assembly. Divers Distrib 24:13–23.  https://doi.org/10.1111/ddi.12661 CrossRefGoogle Scholar
  16. Cosgrove CL, Wood MJ, Day KP, Sheldon BC (2008) Seasonal variation in Plasmodium prevalence in a population of blue tits Cyanistes caeruleus. J Anim Ecol 77:540–548.  https://doi.org/10.1111/j.1365-2656.2008.01370.x CrossRefPubMedGoogle Scholar
  17. Dimitrov D, Zehtindjiev P, Bensch S (2010) Genetic diversity of avian blood parasites in SE Europe: cytochrome b lineages of the genera Plasmodium and Haemoproteus (Haemosporida) from Bulgaria. Acta Parasitol 55:201–209.  https://doi.org/10.2478/s11686-010-0029-z CrossRefGoogle Scholar
  18. Dimitrov D, Valkiūnas G, Zehtindjiev P, Ilieva M, Bensch S (2013) Molecular characterization of haemosporidian parasites (Haemosporida) in yellow wagtail (Motacilla flava), with description of in vitro ookinetes of Haemoproteus motacillae. Zootaxa 3666:369–381.  https://doi.org/10.11646/zootaxa.3666.3.7 CrossRefPubMedGoogle Scholar
  19. Dimitrov D, Palinauskas V, Iezhova TA, Bernotienė R, Ilgūnas M, Bukauskaitė D, Zehtindjiev P, Ilieva M, Shapoval AP, Bolshakov CV, Markovets MY, Bensch S, Valkiūnas G (2015) Plasmodium spp.: an experimental study on vertebrate host susceptibility to avian malaria. Exp Parasitol 148:1–16.  https://doi.org/10.1016/j.exppara.2014.11.005 CrossRefPubMedGoogle Scholar
  20. Dobson A, Lafferty KD, Kuris AM, Hechinger RF, Jetz W (2008) Homage to Linnaeus: how many parasites? How many hosts? Proc Natl Acad Sci U S A 105:11482–11489.  https://doi.org/10.1073/pnas.0803232105 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Drovetski SV, Aghayan SA, Mata VA, Lopes RJ, Mode NA, Harvey JA, Voelker G (2014) Does the niche breadth or trade-off hypothesis explain the abundance-occupancy relationship in avian Haemosporidia? Mol Ecol 23:3322–3329.  https://doi.org/10.1111/mec.12744 CrossRefPubMedGoogle Scholar
  22. Durrant KL, Beadell JS, Ishtiaq F, Graves GR, Olson SL, Gering E, Peirce MA, Milensky CM, Schmidt BK, Gebhard C, Fleischer RC (2006) Avian Hematozoa in South America: a comparison of temperate and tropical zones. Ornithol Monogr 60:98CrossRefGoogle Scholar
  23. Ellis VA, Collins MD, Medeiros MCI, Sari EHR, Coffey ED, Dickerson RC, Lugarini C, Stratford JA, Henry DR, Merrill L, Matthews AE, Hanson AA, Roberts JR, Joyce M, Kunkel MR, Ricklefs RE (2015) Local host specialization, host-switching, and dispersal shape the regional distributions of avian haemosporidian parasites. Proc Natl Acad Sci 112:11294–11299.  https://doi.org/10.1073/pnas.1515309112 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fairfield EA, Hutchings K, Gilroy DL, Kingma SA, Burke T, Komdeur J, Richardson DS (2016) The impact of conservation-driven translocations on blood parasite prevalence in the Seychelles warbler. Sci Rep 6:29596.  https://doi.org/10.1038/srep29596 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ferraguti M, Martínez-de la Puente J, Muñoz J, Roiz D, Ruiz S, Soriguer R, Figuerola J (2013) Avian Plasmodium in Culex and Ochlerotatus mosquitoes from southern Spain: effects of season and host-feeding source on parasite dynamics. PLoS One 8:e66237.  https://doi.org/10.1371/journal.pone.0066237 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ferrer ES, García-Navas V, Sanz JJ, Ortego J (2012) Molecular characterization of avian malaria parasites in three Mediterranean blue tit (Cyanistes caeruleus) populations. Parasitol Res 111:2137–2142.  https://doi.org/10.1007/s00436-012-3062-z CrossRefPubMedGoogle Scholar
  27. Garamszegi LZ (2011) Climate change increases the risk of malaria in birds. Glob Chang Biol 17:1751–1759.  https://doi.org/10.1111/j.1365-2486.2010.02346.x CrossRefGoogle Scholar
  28. Godfrey RD, Fedynich AM, Pence DB (1987) Quantification of Haematozoa in blood smears. J Wildl Dis 23:558–565CrossRefPubMedGoogle Scholar
  29. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  30. Hammers M, Komdeur J, Kingma SA, Hutchings K, Fairfield EA, Gilroy DL, Richardson DS (2016) Age-specific haemosporidian infection dynamics and survival in Seychelles warblers. Sci Rep 6:29720.  https://doi.org/10.1038/srep29720 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hellgren O, Waldenström J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium and Haemoproteus from avian blood. J Parasitol 90:797–802.  https://doi.org/10.1645/GE-184R1 CrossRefPubMedGoogle Scholar
  32. Hellgren O, Waldenström J, Peréz-Tris J, Szöllösi E, Hasselquist D, Križanauskienė A, Ottosson U, Bensch S (2007) Detecting shifts of transmission areas in avian blood parasites - a phylogenetic approach. Mol Ecol 16:1281–1290.  https://doi.org/10.1111/j.1365-294X.2007.03227.x CrossRefPubMedGoogle Scholar
  33. Inci A, Yildirim A, Njabo KY, Duzlu O, Biskin Z, Ciloglu A (2012) Detection and molecular characterization of avian Plasmodium from mosquitoes in Central Turkey. Vet Parasitol 188:179–184.  https://doi.org/10.1016/j.vetpar.2012.02.012 CrossRefPubMedGoogle Scholar
  34. Inumaru M, Murata K, Sato Y (2017) Prevalence of avian haemosporidia among injured wild birds in Tokyo and environs, Japan. Int J Parasitol Parasites Wildl 6:299–309.  https://doi.org/10.1016/j.ijppaw.2017.09.007 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ishtiaq F (2017) Exploring host and geographical shifts in transmission of haemosporidians in a Palaearctic passerine wintering in India. J Ornithol 158:869–874.  https://doi.org/10.1007/s10336-017-1444-9 CrossRefGoogle Scholar
  36. Jarvi SI, Schultz JJ, Atkinson CT (2002) PCR diagnostics underestimate the prevalence of avian malaria (Plasmodium relictum) in experimentally-infected passerines. J Parasitol 88:153–158. https://doi.org/10.1645/0022-3395(2002)088[0153:PDUTPO]2.0.CO;2Google Scholar
  37. Jarvi SI, Farias ME, Lapointe DA, Belcaid M, Atkinson CT (2013) Next-generation sequencing reveals cryptic mtDNA diversity of Plasmodium relictum in the Hawaiian islands. Parasitology 140:1741–1750.  https://doi.org/10.1017/S0031182013000905 CrossRefPubMedGoogle Scholar
  38. Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, Hudson P, Jolles A, Jones KE, Mitchell CE, Myers SS, Bogich T, Ostfeld RS (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468:647–652.  https://doi.org/10.1038/nature09575 CrossRefPubMedGoogle Scholar
  39. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  40. Lebarbenchon C, Poulin R, Gauthier-Clerc M, Thomas F (2006) Parasitological consequences of overcrowding in protected areas. EcoHealth 3:303–307.  https://doi.org/10.1007/s10393-006-0067-z CrossRefGoogle Scholar
  41. Levin II, Zwiers P, Deem SL, Geest EA, Higashiguchi JM, Iezhova TA, Jiménez-Uzcátegui G, Kim DH, Morton JP, Perlut NG, Renfrew RB, Sari EHR, Valkiūnas G, Parker PG (2013) Multiple lineages of avian malaria parasites (Plasmodium) in the Galapagos islands and evidence for arrival via migratory birds. Conserv Biol 27:1366–1377.  https://doi.org/10.1111/cobi.12127 CrossRefPubMedGoogle Scholar
  42. Levin II, Colborn RE, Kim D, Perlut NG, Renfrew RB, Parker PG (2016) Local parasite lineage sharing in temperate grassland birds provides clues about potential origins of Galapagos avian Plasmodium. Ecol Evol 6:716–726.  https://doi.org/10.1002/ece3.1894 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Loiseau C, Harrigan RJ, Cornel AJ, Guers SL, Dodge M, Marzec T, Carlson JS, Seppi B, Sehgal RNM (2012) First evidence and predictions of Plasmodium transmission in Alaskan bird populations. PLoS One 7:e44729.  https://doi.org/10.1371/journal.pone.0044729 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Marzal A, Bensch S, Reviriego M, Balbontin J, De Lope F (2008) Effects of malaria double infection in birds: one plus one is not two. J Evol Biol 21:979–987.  https://doi.org/10.1111/j.1420-9101.2008.01545.x CrossRefPubMedGoogle Scholar
  45. Marzal A, Ricklefs RE, Valkiūnas G, Albayrak T, Arriero E, Bonneaud C, Czirják GA, Ewen J, Hellgren O, Hořáková D, Iezhova TA, Jensen H, Križanauskienė A, Lima MR, de Lope F, Magnussen E, Martin LB, Møller AP, Palinauskas V, Pap PL, Pérez-Tris J, Sehgal RNM, Soler M, Szöllősi E, Westerdahl H, Zetindjiev P, Bensch S (2011) Diversity, loss, and gain of malaria parasites in a globally invasive bird. PLoS One 6:e21905.  https://doi.org/10.1371/journal.pone.0021905 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Mata VA, da Silva LP, Lopes RJ, Drovetski SV (2015) The strait of Gibraltar poses an effective barrier to host-specialised but not to host-generalised lineages of avian Haemosporidia. Int J Parasitol 45:711–719.  https://doi.org/10.1016/j.ijpara.2015.04.006 CrossRefPubMedGoogle Scholar
  47. Murdock CC, Foufopoulos J, Simon CP (2013) A transmission model for the ecology of an avian blood parasite in a temperate ecosystem. PLoS One 8:e76126.  https://doi.org/10.1371/journal.pone.0076126 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Newton I (2008) The migration ecology of birds, first edit. Academic press as an imprint of Elsevier, LondonGoogle Scholar
  49. Okanga S, Cumming GS, Hockey PAR, Nupen L, Peters JL (2014) Host specificity and co-speciation in avian haemosporidia in the Western Cape, South Africa. PLoS One 9:e86382.  https://doi.org/10.1371/journal.pone.0086382 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Olias P, Wegelin M, Zenker W, Freter S, Gruber AD, Klopfleisch R (2011) Avian malaria deaths in parrots, Europe. J Infect Dis 17l:950–952.  https://doi.org/10.3201/eid1705.101618 Google Scholar
  51. Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S (2008) Plasmodium relictum (lineage P-SGS1): effects on experimentally infected passerine birds. Exp Parasitol 120:372–380.  https://doi.org/10.1016/j.exppara.2008.09.001 CrossRefPubMedGoogle Scholar
  52. Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S (2011) Plasmodium relictum (lineage SGS1) and Plasmodium ashfordi (lineage GRW2): the effects of the co-infection on experimentally infected passerine birds. Exp Parasitol 127:527–533.  https://doi.org/10.1016/j.exppara.2010.10.007 CrossRefPubMedGoogle Scholar
  53. Peréz-Tris J, Bensch S (2005) Dispersal increases local transmission of avian malarial parasites. Ecol Lett 8:838–845.  https://doi.org/10.1111/j.1461-0248.2005.00788.x CrossRefGoogle Scholar
  54. Podmokła E, Dubiec A, Drobniak SM, Sudyka J, Krupski A, Arct A, Gustafsson L, Cichoń M (2016) Effect of haemosporidian infections on host survival and recapture rate in the blue tit. J Avian Biol 125:336–342.  https://doi.org/10.1111/oik.02629 Google Scholar
  55. Richardson DS, Jury FL, Blaakmeer K, Komdeur J, Burke T (2001) Parentage assignment and extra-group paternity in a cooperative breeder: the Seychelles warbler (Acrocephalus sechellensis). Mol Ecol 10:2263–2273.  https://doi.org/10.1046/j.0962-1083.2001.01355.x CrossRefPubMedGoogle Scholar
  56. Ricklefs RE, Swanson BL, Fallon SM, Martinez-Abrain A, Scheuerlein A, Gray J, Latta S (2005) Community relationships of avian malaria parasites in southern Missouri. Ecol Monogr 75:543–559CrossRefGoogle Scholar
  57. Ricklefs RE, Medeiros M, Ellis VA, Svensson-Coelho M, Blake JG, Loiselle BA, Soares L, Fecchio A, Outlaw D, Marra PP, Latta SC, Valkiūnas G, Hellgren O, Bensch S (2017) Avian migration and the distribution of malaria parasites in new world passerine birds. J Biogeogr 44:1113–1123.  https://doi.org/10.1111/jbi.12928 CrossRefGoogle Scholar
  58. Rojo MÁ, Hernández MÁ, Campos F, Santamaría T, Dias S, Casanueva P (2015) The Iberian peninsula is an area of infection by Haemoproteus payevskyi and Haemoproteus nucleocondensus for the white-throated dipper Cinclus cinclus. Ardeola 62:373–382.  https://doi.org/10.13157/arla.62.2.2015.373 CrossRefGoogle Scholar
  59. Santiago-Alarcon D, Mettler R, Segelbacher G, Schaefer HM (2013) Haemosporidian parasitism in the blackcap Sylvia atricapilla in relation to spring arrival and body condition. J Avian Biol 44:521–530.  https://doi.org/10.1111/j.1600-048X.2013.00181.x CrossRefGoogle Scholar
  60. Sehgal RNM (2015) Manifold habitat effects on the prevalence and diversity of avian blood parasites. Int J Parasitol Parasites Wildl 4:421–430.  https://doi.org/10.1016/j.ijppaw.2015.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Shurulinkov P, Chakarov N (2006) Prevalence of blood parasites in different local populations of reed warbler (Acrocephalus scirpaceus) and great reed warbler (Acrocephalus arundinaceus). Parasitol Res 99:588–592.  https://doi.org/10.1007/s00436-006-0202-3 CrossRefPubMedGoogle Scholar
  62. Shurulinkov P, Golemansky V (2003) Plasmodium and Leucocytozoon ( Sporozoa : Haemosporida ) of wild birds in Bulgaria. Acta Protozool 42:205–214Google Scholar
  63. Svensson L (1992) Identification guide to European passerines, fourth. British Trust for Ornithology, StockholmGoogle Scholar
  64. Swanson BL, Lyons AC, Bouzat JL (2014) Distribution, prevalence and host specificity of avian malaria parasites across the breeding range of the migratory lark sparrow (Chondestes grammacus). Genetica 142:235–249.  https://doi.org/10.1007/s10709-014-9770-9 CrossRefPubMedGoogle Scholar
  65. Szöllősi E, Rosivall B, Hasselquist D, Török J (2009) The effect of parental quality and malaria infection on nestling performance in the collared flycatcher (Ficedula albicollis). J Ornithol 150:519–527.  https://doi.org/10.1007/s10336-008-0370-2 CrossRefGoogle Scholar
  66. Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC PRESS Boca Raton London New York Washington, D.C.Google Scholar
  67. Valkiūnas G, Iezhova TA, Križanauskienė A, Palinauskas V, Sehgal RNM, Bensch S (2008) A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J Parasitol 94:1395–1401.  https://doi.org/10.1645/GE-1570.1 CrossRefPubMedGoogle Scholar
  68. Valkiūnas G, Iezhova TA, Loiseau C, Sehgal RNM (2009) Nested cytochrome b polymerase chain reaction diagnostics detect sporozoites of hemosporidian parasites in peripheral blood of naturally infected birds. J Parasitol 95:1512–1515.  https://doi.org/10.1645/GE-2105.1 CrossRefPubMedGoogle Scholar
  69. Valkiūnas G, Kazlauskienė R, Bernotienė R, Palinauskas V, Iezhova TA (2013) Abortive long-lasting sporogony of two Haemoproteus species (Haemosporida, Haemoproteidae) in the mosquito Ochlerotatus cantans, with perspectives on haemosporidian vector research. Parasitol Res 112:2159–2169.  https://doi.org/10.1007/s00436-013-3375-6 CrossRefPubMedGoogle Scholar
  70. Van Riper C III, Van Riper SG, Goff ML, Laird M (1986) The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol Monogr 56:327–344.  https://doi.org/10.2307/1942550 CrossRefGoogle Scholar
  71. Ventim R, Mendes L, Ramos JA, Cardoso H, Pérez-Tris J (2012) Local haemoparasites in introduced wetland passerines. J Ornithol 153:1253–1259.  https://doi.org/10.1007/s10336-012-0860-0 CrossRefGoogle Scholar
  72. Waldenström J, Bensch S, Kiboi S, Hasselquist D, Ottusson U (2002) Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Biol Evol 11:1545–1554.  https://doi.org/10.1046/j.1365-294X.2002.01523.x Google Scholar
  73. Waldenström J, Bensch S, Ostman O (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90:191–194.  https://doi.org/10.1645/GE-3221RN CrossRefPubMedGoogle Scholar
  74. Zehtindjiev P, Ilieva M, Križanauskienė A, Oparina O, Oparin M, Bensch S (2009) Occurrence of haemosporidian parasites in the paddyfield warbler, Acrocephalus agricola (Passeriformes, Sylviidae). Acta Parasitol 54:295–300.  https://doi.org/10.2478/s11686-009-0052-0 CrossRefGoogle Scholar
  75. Zehtindjiev P, Križanauskienė A, Bensch S, Palinauskas V, Asghar M, Dimitrov D, Scebba S, Valkiūnas G (2012) A new morphologically distinct avian malaria parasite that fails detection by established polymerase chain reaction-based protocols for amplification of the cytochrome B gene. J Parasitol 98:657–665.  https://doi.org/10.1645/GE-3006.1 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Biodiversity and Ecosystem Research at the Bulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicBrnoCzech Republic

Personalised recommendations