Skip to main content

Advertisement

Log in

Efficacy of larvicides for the control of dengue, Zika, and chikungunya vectors in an urban cemetery in southern Mexico

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Many countries in Latin America have recently experienced outbreaks of Zika and chikungunya fever, in additional to the usual burden imposed by dengue, all of which are transmitted by Aedes aegypti in this region. To identify potential larvicides, we determined the toxicity of eight modern insecticides to A. aegypti larvae from a colony that originated from field-collected insects in southern Mexico. The most toxic compounds were pyriproxyfen (which prevented adult emergence) and λ-cyhalothrin, followed by spinetoram, imidacloprid, thiamethoxam, and acetamiprid, with chlorantraniliprole and spiromesifen the least toxic products. Field trails performed in an urban cemetery during a chikungunya epidemic revealed that insecticide-treated ovitraps were completely protected from the presence of Aedes larvae and pupae for 6 and 7 weeks in spinosad (Natular G30) and λ-cyhalothrin-treated traps in both seasons, respectively, compared to 5–6 weeks for temephos granule-treated ovitraps, but was variable for pyriproxyfen-treated ovitraps with and 1 and 5 weeks of absolute control in the dry and rainy seasons, respectively. Insecticide treatments influenced the mean numbers of Aedes larvae + pupae in each ovitrap, mean numbers of eggs laid, and percentage of egg hatch over time in both trials. The dominant species was A. aegypti in both seasons, although the invasive vector Aedes albopictus was more prevalent in the rainy season (26.7%) compared to the dry season (10.2%). We conclude that the granular formulation of spinosad (Natular G30) and a suspension concentrate formulation of λ-cyhalothrin proved highly effective against Aedes spp. in both the dry and rainy seasons in the cemetery habitat in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alves-Honório N, Cabello PH, Codeço CT, Lourenço-de-Oliveira R (2006) Preliminary data on the performance of Aedes aegypti and Aedes albopictus immatures developing in water-filled tires in Rio de Janeiro. Mem Inst Oswaldo Cruz 101:225–228

    Article  Google Scholar 

  • Antwi FB, Reddy GV (2015) Toxicological effects of pyrethroids on non-target aquatic insects. Environ Toxicol Pharmacol 40:915–923

    Article  CAS  PubMed  Google Scholar 

  • Ardila-Roldán S, Santacoloma L, Brochero H (2013) Status of insecticide susceptibility of public health use in natural populations of Aedes aegypti (Diptera: Culicidae) of Casanare, Colombia. Biomedica 33:446–458

    Article  PubMed  Google Scholar 

  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF (2013) The global distribution and burden of dengue. Nature 496:504–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond JG, Marina CF, Williams T (2004) The naturally-derived insecticide Spinosad is highly toxic to Aedes and Anopheles mosquito larvae. Med Vet Entomol 18:50–56

    Article  CAS  PubMed  Google Scholar 

  • Bond JG, Casas-Martinez M, Quiroz-Martinez H, Novelo-Gutierrez R, Marina CF, Ulloa A, Orozco-Bonilla A, Muñoz M, Williams T (2014) Diversity of mosquitoes of medical importance and the aquatic insects associated with their oviposition sites along the Pacific coast Mexico. Parasit Vectors 7:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Bond JG, Ramírez-Osorio A, Marina CF, Fernández-Salas I, Liedo P, Dor A, Williams T (2017) Efficiency of two larval diets for mass-rearing of the mosquito Aedes aegypti. PLoS One 12:e0187420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouabida H, Tine-Djebbar F, Tine S, Soltani N (2017) Activity of spiromesifen on growth and development of Culex pipiens (Diptera: Culicidae): toxicological, biometrical and biochemical aspects. J Entomol Zool Stud 5:572–577

    Google Scholar 

  • Braks MAH, Alves-Honório N, Lounibos L, Lourenҫo-de-Oliveira R, Juliano S (2004) Interspecific competition between two invasive species of container mosquitoes, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazil. Ann Entomol Soc Am 97:130–139

    Article  Google Scholar 

  • Bridget M, Kuehn MSJ (2014) Chikungunya virus transmission found in the United States: US health authorities brace for wider spread. J Am Med Assoc 312:776–777

    Article  Google Scholar 

  • Cardona-Ospina JA, Diaz-Quijano FA, Rodríguez-Morales AJ (2015) Burden of chikungunya in Latin American countries: estimates of disability-adjusted life-years (DALY) lost in the 2014 epidemic. J Infect Public Health 38:60–61

    Google Scholar 

  • CENAPRECE (2017) Centro Nacional de Programas Preventivos y Control de Enfermedades. https://www.gob.mx/cms/uploads/attachment/file/236439/Lista_actualizada_de_productos_recomendados_por_Cenaprece2017.pdf

  • Chino-Cantor A, Sánchez-Arroyo H, Ortega-Arenas LD, Castro-Hernández E (2014) Insecticide susceptibility of Aedes aegypti L. (Diptera: Culicidae) in Guerrero, Mexico. Southwestern Entomol 39:601–612

    Article  Google Scholar 

  • Corbel V, N'Guessan R, Brengues C, Chandre F, Djogbenou L, Martin T, Akogbeto M, Hougard JM, Rowland M (2007) Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Trop 101:207–216

    Article  CAS  PubMed  Google Scholar 

  • Darriet F, Corbel V (2006) Laboratory evaluation of pyriproxyfen and spinosad, alone and in combination, against Aedes aegypti larvae. J Med Entomol 43:1190–1194

    Article  CAS  PubMed  Google Scholar 

  • Darriet F, Duchon S, Hougard JM (2005) Spinosad: a new larvicide against insecticide-resistant mosquito larvae. J Am Mosq Control Assoc 21:495–496

    Article  CAS  PubMed  Google Scholar 

  • Darriet F, Marcombe S, Etienne M, Yébakima A, Agnew P, Yp-Tcha MM, Corbel V (2010) Field evaluation of pyriproxyfen and spinosad mixture for the control of insecticide resistant Aedes aegypti in Martinique (French West Indies). Parasit Vectors 3:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Dennett JA, Bernhardt JL, Meisch MV (2003) Operational note effects of fipronil and lambda-cyhalothrin against larval Anopheles quadrimaculatus and nontarget aquatic mosquito predators in Arkansas small rice plots. J Am Mosq Control Assoc 19:172–174

    CAS  PubMed  Google Scholar 

  • Díaz-González E, Kautz T, Dorantes-Delgado A, Malo-García I, Laguna-Aguilar M, Langsjoen R, Weaver S (2015) First report of Aedes aegypti transmission of chikungunya virus in the Americas. Am J Trop Med Hyg 93:1325–1329

    Article  PubMed  PubMed Central  Google Scholar 

  • dos Santos Dias L, Macoris MLG, Macoris Andrighetti MT, Garbeloto Otrera VC, dos Santos Dias A, Soares da Rocha Bauzer LG, de Melo Rodovalho C, Martins AJ, Pereira Lima JB (2017) Toxicity of spinosad to temephos-resistant Aedes aegypti populations in Brazil. PLoS One 12:e0173689

    Article  PubMed  PubMed Central  Google Scholar 

  • Equihua M, Ibáñez-Bernal S, Benítez G, Estrada-Contreras I, Sandoval-Ruiz CA, Mendoza-Palmero FS (2017) Establishment of Aedes aegypti (L.) in mountainous regions in Mexico: increasing number of population at risk of mosquito-borne disease and future climate conditions. Acta Trop 166:316–327

    Article  PubMed  Google Scholar 

  • Fauci AS, Morens DM (2016) Zika virus in the Americas—yet another arbovirus threat. New Engl J Med 374:601–604

    Article  PubMed  Google Scholar 

  • Fernández-Salas I, Danis-Lozano R, Casas-Martínez M, Ulloa A, Bond JG, Marina CF, Lopez-Ordóñez T, Elizondo-Quiroga A, Torres-Monzón JA, Díaz-González EE (2015) Historical inability to control Aedes aegypti as main contributor of fast dispersal of chikungunya outbreaks in Latin America. Antivir Res 124:30–42

    Article  PubMed  Google Scholar 

  • George L, Lenhart A, Toledo J, Lazaro A, Han WW, Velayudhan R, Ranzinger SR, Horstick O (2015) Community-effectiveness of temephos for dengue vector control: a systematic literature review. PLoS Negl Trop Dis 9:e0004006

    Article  PubMed  PubMed Central  Google Scholar 

  • Grisales N, Poupardin R, Gomez S, Fonseca-Gonzalez I, Ranson H, Lenhart A (2013) Temephos resistance in Aedes aegypti in Colombia compromises dengue vector control. PLoS Negl Trop Dis 7:e2438

    Article  PubMed  PubMed Central  Google Scholar 

  • Grubaugh ND, Ladner JT, Kraemer MU, Dudas G, Tan AL, Gangavarapu K, Wiley MR, White S, Thézé J, Magnani DM, Prieto K (2017) Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 546:401–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerbois M, Fernandez-Salas I, Azar SR, Danis-Lozano R, Alpuche-Aranda CM, Leal G, Weaver SC (2016) Outbreak of Zika virus infection, Chiapas state, Mexico, 2015, and first confirmed transmission by Aedes aegypti mosquitoes in the Americas. J Infect Dis 214:1349–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry MC, Assi SB, Rogier C, Dossou-Yovo J, Chandre F, Guillet P, Carnevale P (2005) Protective efficacy of lambda-cyhalothrin treated nets in Anopheles gambiae pyrethroid resistance areas of Cote d’Ivoire. Am J Trop Med Hyg 73:859–864

    CAS  PubMed  Google Scholar 

  • Hernández-Amparan S, Pérez-Santiago G, Correa-Ramírez MM, Reyes-Muñoz JL, Álvarez-Zagoya R, Ibáñez-Bernal S (2017) First record of Aedes (Stegomyia) aegypti (L.) at Durango City, Mexico. Southwestern Entomol 42:789–793

    Article  Google Scholar 

  • Hertlein MB, Mavrotas C, Jousseaume C, Lysandrou M, Thompson GD, Jany W, Ritchie SA (2010) A review of spinosad as a natural product for larval mosquito control. J Am Mosq Control Assoc 26:67–87

    Article  CAS  PubMed  Google Scholar 

  • Horstick O, Runge-Ranzinger S, Nathan MB, Kroeger A (2010) Dengue vector-control services: how do they work? A systematic literature review and country case studies. Trans R Soc Trop Med Hyg 104:379–386

    Article  PubMed  Google Scholar 

  • Juliano SA, O’Meara GF, Morrill LR, Cutwa MM (2002) Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia 130:458–469

    Article  PubMed  PubMed Central  Google Scholar 

  • Juliano SA, Lounibos LP, O’Meara GF (2004) A field test for competitive effects of Aedes albopictus on A. aegypti in South Florida: differences between sites of coexistence and exclusion? Oecologia 139:583–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Kautz TF, Díaz-González EE, Erasmus JH, Malo-García IR, Langsjoen RM, Patterson EI, Fernandez-Salas I (2015) Chikungunya virus as cause of febrile illness outbreak, Chiapas, Mexico, 2014. Emerg Infect Dis 21:2070–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan HAA, Akram W, Shehzad K, Shaalan EAS (2011) First report of field evolved resistance to agrochemicals in dengue mosquito, Aedes albopictus (Diptera: Culicidae), from Pakistan. Parasit Vectors 4:146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirst HA (2010) The spinosyn family of insecticides: realizing the potential of natural products research. J Antibiot 63:101–111

    Article  CAS  PubMed  Google Scholar 

  • Kuri-Morales P, Correa-Morales F, González-Acosta C, Sánchez-Tejeda G, Dávalos-Becerril E, Juárez-Franco MF, González-Roldán JF (2017) First report of Stegomyia aegypti (=Aedes aegypti) in Mexico City, Mexico. Med Vet Entomol 31:240–242

    Article  CAS  PubMed  Google Scholar 

  • Lawler SP, Dritz DA, Christiansen JA, Cornel AJ (2007) Effects of lambda-cyhalothrin on mosquito larvae and predatory aquatic insects. Pest Manag Sci 63:234–240

    Article  CAS  PubMed  Google Scholar 

  • Li CX, Wang ZM, Dong YD, Yan T, Zhang YM, Guo XX, Xue RD (2010) Evaluation of lambda-cyhalothrin barrier spray on vegetation for control of Aedes albopictus in China. J Am Mosq Control Assoc 26:346–348

    Article  PubMed  Google Scholar 

  • Liu H, Cupp EW, Guo A, Liu N (2004) Insecticide resistance in Alabama and Florida mosquito strains of Aedes albopictus. J Med Entomol 41:946–952

    Article  CAS  PubMed  Google Scholar 

  • Lounibos LP, Kramer LD (2016) Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus. J Infect Dis 214:S453–S458

    Article  PubMed  PubMed Central  Google Scholar 

  • Lozano-Fuentes S, Hayden MH, Welsh-Rodriguez C, Ochoa-Martinez C, Tapia-Santos B, Kobylinski KC, Steinhoff DF (2012) The dengue virus mosquito vector Aedes aegypti at high elevation in Mexico. Am J Trop Med Hyg 87:902–909

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcombe S, Darriet F, Agnew P, Etienne M, Yp-Tcha MM, Yébakima A, Corbel V (2011) Field efficacy of new larvicide products for control of multi-resistant Aedes aegypti populations in Martinique (French West Indies). Am J Trop Med Hyg 84:118–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcombe S, Mathieu RB, Pocquet N, Riaz M-A, Poupardin R, Sélior S (2012) Insecticide resistance in the dengue vector Aedes aegypti from Martinique: distribution, mechanisms and relations with environmental factors. PLoS One 7:e30989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marina CF, Bond JG, Casas M, Muñoz J, Orozco A, Valle J, Williams T (2011) Spinosad as an effective larvicide for control of Aedes albopictus and Aedesaegypti, vectors of dengue in southern Mexico. Pest Manag Sci 67:114–121

    Article  CAS  PubMed  Google Scholar 

  • Marina CF, Bond JG, Muñoz J, Valle J, Chirino N, Williams T (2012) Spinosad: a biorational mosquito larvicide for use in car tires in southern Mexico. Parasit Vectors 5:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marina CF, Bond JG, Muñoz J, Valle J, Novelo-Gutiérrez R, Williams T (2014) Efficacy and non-target impact of spinosad, Bti and temephos larvicides for control of Anopheles spp. in an endemic malaria region of southern Mexico. Parasit Vectors 7:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Mashauri FM, Kinung’hi SM, Kaatano GM, Magesa SM, Kishamawe C, Mwanga JR, Mboera LEG (2013) Impact of indoor residual spraying of lambda-cyhalothrin on malaria prevalence and anemia in an epidemic-prone district of Muleba, north-western Tanzania. Am J Trop Med Hyg 88:841–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo-Santos MAV, Varjal-Melo JJM, Araújo AP, Gomes TCS, Paiva MHS, Regis LN, Ayres CFJ (2010) Resistance to the organophosphate temephos: mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Trop 113:180–189

    Article  CAS  PubMed  Google Scholar 

  • Miller JE, Gibson G (1994) Behavioral response of host-seeking mosquitoes (Diptera: Culicidae) to insecticide-impregnated bed netting: a new approach to insecticide bioassays. J Med Entomol 31:114–122

    Article  CAS  PubMed  Google Scholar 

  • Mulla MS, Majori G, Arata AA (1979) Impact of biological and chemical mosquito control agents on nontarget biota in aquatic ecosystems. Residue Rev 71:121–173

    CAS  Google Scholar 

  • Muzari OM, Adamczyk R, Davis J, Ritchie S, Devine G (2014) Residual effectiveness of λ-cyhalothrin harbourage sprays against foliage-resting mosquitoes in North Queensland. J Med Entomol 51:444–449

    Article  PubMed  Google Scholar 

  • NOM (Norma Oficial Mexicana) NOM-032-SSA2 (2014) Para la vigilancia epidemiológica, prevención y control de enfermedades transmitidas por vector. Diario Oficial de la Federación. 22-8-2014, Secretaría de Salud. Gobierno Federal de México, Ciudad de México. 2014

  • Pech-May A, Moo-Llanes DA, Puerto-Avila MB, Casas M, Danis-Lozano R, Ponce G, Tun-Ku E, Pinto-Castillo JF, Villegas A, Ibáñez-Piñon CR, González C, Ramsey JM (2016) Population genetics and ecological niche of invasive Aedes albopictus in México. Acta Trop 157:30–41

    Article  PubMed  Google Scholar 

  • Pérez CM, Marina CF, Bond JG, Rojas JC, Valle J, Williams T (2007) Spinosad, a naturally-derived insecticide, for control of Aedes aegypti: efficacy, persistence and oviposition response. J Med Entomol 44:631–638

    Article  PubMed  Google Scholar 

  • Pettit WJ, Whelan PI, McDonnell J, Jacups SP (2010) Efficacy of alpha-cypermethrin and lambda-cyhalothrin applications to prevent Aedes breeding in tires. J Am Mosq Control Assoc 26:387–397

    Article  PubMed  Google Scholar 

  • Reiskind M, Lounibos L (2009) Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus. Med Vet Entomol 23:62–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiskind M, Lounibos L (2013) Spatial and temporal patterns of abundance of Aedes aegypti L. (Stegomyia aegypti) and Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] in southern Florida. Med Vet Entomol 27:421–429

    Article  CAS  PubMed  Google Scholar 

  • Reiter P, Gubler DJ (1997) Surveillance and control of urban dengue vectors. In: Gubler DJ, Kuno G (eds) Dengue and dengue hemorrhagic fever. CAB International, Wallingford, pp 425–462

    Google Scholar 

  • Rodríguez MM, Bisset JA, Fernández D (2007) Levels of insecticide resistance and resistance mechanisms in Aedes aegypti from some Latin American countries. J Am Mosq Control Assoc 23:420–429

    Article  PubMed  Google Scholar 

  • Roiz D, Boussès P, Simard F, Paupy C, Fontenille D (2015) Autochthonous chikungunya transmission and extreme climate events in southern France. PLoS Negl Trop Dis 9:e0003854

    Article  PubMed  PubMed Central  Google Scholar 

  • Samuel M, Maoz D, Manrique P, Ward T, Runge-Ranzinger S, Toledo J, Boyce R, Horstick O (2017) Community effectiveness of indoor spraying as a dengue vector control method: a systematic review. PLoS Negl Trop Dis 11:e0005837

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaffner F, Fontenille D, Mathis A (2014) Autochthonous dengue emphasises the threat of arbovirosis in Europe. Lancet Infect Dis 14:1044

    Article  PubMed  Google Scholar 

  • Secretaría de Salud (2014) Boletín Epidemiológico. Sistema Nacional de Vigilancia Epidemiológica. Sistema Único de Información. Secretaría de Salud, México. 2014;31:53. Available at: https://www.gob.mx/cms/uploads/attachment/file/10866/sem52.pdf. Accessed 23 Mar 2018

  • Secretaría de Salud (2015) Boletín Epidemiológico. Sistema Nacional de Vigilancia Epidemiológica. Sistema Único de Información. Secretaría de Salud, México. 2015;32:52. Available at: https://www.gob.mx/cms/uploads/attachment/file/50233/sem52.pdf. Accessed 23 Mar 2018

  • Shaalan EAS, Canyon DV, Bowden B, Younes MWF, Abdel-Wahab H, Mansour AH (2006) Efficacy of botanical extracts from Callitris glaucophylla against Aedes aegypti and Culex annulirostris mosquitoes. Trop Biomed 23:180–185

    Google Scholar 

  • Shah RM, Alam M, Ahmad D, Waqas M, Ali Q, Binyamin M, Shad SA (2016) Toxicity of 25 synthetic insecticides to the field population of Culex quinquefasciatus Say. Parasitol Res 115:4345–4351

    Article  PubMed  Google Scholar 

  • Shetty V, Sanil D, Shetty NJ (2013) Insecticide susceptibility status in three medically important species of mosquitoes, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus, from Bruhat Bengaluru Mahanagara Palike, Karnataka, India. Pest Manag Sci 69:257–267

    Article  CAS  PubMed  Google Scholar 

  • Sihuincha M, Zamora-Perea E, Orellana-Rios W, Stancil JD, Lopez-Sifuentes V, Vidal-Ore C, Devine GJ (2005) Potential use of pyriproxyfen for control of Aedes aegypti (Diptera: Culicidae) in Iquitos, Peru. J Med Entomol 42:620–630

    Article  CAS  PubMed  Google Scholar 

  • Sulaiman S, Pawanchee ZA, Wahab A, Jamal J, Sohadi AR (1999) Field efficacy of fipronil 3G, lambda-cyhalothrin 10% CS, and sumithion 50EC against the dengue vector Aedes albopictus in discarded tires. J Vector Ecol 24:154–157

    CAS  PubMed  Google Scholar 

  • Sullivan JJ, Goh KS (2008) Environmental fate and properties of pyriproxyfen. J Pestic Sci 33:339–350

    Article  CAS  Google Scholar 

  • Thavara U, Tawatsin A, Chansang C, Kong-ngamsuk W, Paosriwong S, Boon-Long J, Rongsriyam Y, Komalamisra N (2001) Larval occurrence, oviposition behavior and biting activity of potential mosquito vectors of dengue on Samui Island, Thailand. J Vector Ecol 26:172–180

    CAS  PubMed  Google Scholar 

  • Vezzani D (2007) Artificial container breeding mosquitoes and cemeteries: a perfect match. Trop Med Int Health 12:299–313

    Article  PubMed  Google Scholar 

  • Vontas J, Kioulos E, Pavlidi N, Morou E, Della Torre A, Ranson H (2012) Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pestic Biochem Physiol 104:126–131

    Article  CAS  Google Scholar 

  • WHO (2001) Report of the 4th WHOPES Working Group meeting WHO/HQ, Geneva, 4–5 December 2000. Review of IR3535; KBR3023; (RS)-methoprene 20% EC, pyriproxyfen 0.5% GR; and lambda-cyhalothrin 2.5% CS. WHO, Geneva

  • WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides. WHO communicable disease control, prevention and eradication WHO pesticide evaluation scheme. World Health Organization (WHO/CDS/WHOPES/GCDPP/200513), Geneva

    Google Scholar 

  • WHO (2008) Pyriproxyfen in drinking-water. Background document for preparation of WHO guidelines for drinking-water quality. World Health Organization (WHO/HSE/AMR/08.03/10), Geneva

    Google Scholar 

  • WHO (2017) WHOPES-recommended compounds and formulations for control of mosquito larvae. http://www.who.int/whopes/Mosquito_larvicides_28_July_2017.pdf

  • Williams T, Valle J, Viñuela E (2003) Is the naturally derived insecticide spinosad compatible with insect natural enemies? Biocontrol Sci Tech 13:459–475

    Article  Google Scholar 

Download references

Acknowledgements

We thank Sergio R. Torreblanca (Coordinador de Control de Vectores, Jurisdicción Sanitaria No. 7) for the permission to perform cemetery experiments. We also thank Eufronio Diaz, Magdali Agustín, Antonia Ramírez, and Surisaday Mejía for valuable technical assistance and Gabriel Mercado (INECOL) for logistical support to TW. The study was funded by the CONACYT-FOSISSS project number 2012-180201 awarded to CFM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor Williams.

Ethics declarations

The mosquito colony fed on rabbit blood in line with guidelines established by the Ethics Committee of the Instituto Nacional de Salud Pública, Mexico.

Additional information

Section Editor: Helge Kampen

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marina, C.F., Bond, J.G., Muñoz, J. et al. Efficacy of larvicides for the control of dengue, Zika, and chikungunya vectors in an urban cemetery in southern Mexico. Parasitol Res 117, 1941–1952 (2018). https://doi.org/10.1007/s00436-018-5891-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-5891-x

Keywords

Navigation