Distribution of the acanthocephalan Neoechinorhynchus buttnerae and semiquantitative analysis of histopathological damage in the intestine of tambaqui (Colossoma macropomum)

  • Lídia Silva Aguiar
  • Maria Inês Braga de Oliveira
  • Lorena Vieira de Matos
  • Ana Lúcia Silva Gomes
  • Jesaías Ismael da Costa
  • Grazyelle Sebrenski da Silva
Original Paper

Abstract

In this paper, we have described for the first time a semiquantitative method to evaluate histopathological damage, taking the degree of Neoechinorhynchus buttnerae attachment to the intestinal wall of the tambaqui (Colossoma macropomum), an important species in Brazilian aquaculture, into account. Twelve specimens of tambaqui were collected from a fish farm. Their bowels were removed and divided into seven morphologically distinct portions according to density and distribution of the parasite studies. Fragments from each fraction were histologically processed and analyzed. There was a clear preference on the part of N. buttnerae for the intermediate regions of the intestinal tube, where the highest densities were recorded. The intensity of damage to the host, estimated by calculating the Histopathological Alteration Index (HAI), showed severe and irreversible changes only where the parasite had its proboscis penetrated into the intestine wall.

Keywords

Histopathology Acanthocephalan Intestine Tambaqui 

References

  1. Amin OM (1987) Acanthocephala from lake fishes in Wisconsin: ecology and host relationships of Pomphorhynchus bulbocolli (Pomphorhynchidae). J Parasitol 73(2):278–289CrossRefPubMedGoogle Scholar
  2. Amin OM (2013) Classification of the Acanthocephala. Folia Parasitol (Praha) 60(4):273–305CrossRefGoogle Scholar
  3. Amin OM, Heckmann RA, Zargar UR (2017) Description of a new quadrigyrid acanthocephalan from Kashmir, with notes on metal analysis and histopathology, and a key to species of the subgenus Acanthosentis from the Indian subcontinent. J Parasitol 103(5):458–470CrossRefPubMedGoogle Scholar
  4. Bayoumy ME, Abd El-Hady OK, Osman HAM (2006) Site adaptations of Acanthogyrus (Acanthosentis) tilapiae: observations through light and scanning electron microscopy. J Vet Sci 7(4):339–342CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bosi G, Dezfuli BS (2015) Responses of Squalius cephalus intestinal mucous cells to Pomphorhynchus laevis. Parasitol Int 64(2):167–172CrossRefPubMedGoogle Scholar
  6. Brown AF (1987) Anatomical variability and secondary sexual characteristics in Pomphorhynchus laevis (Müller, 1776) (Acanthocephala). Syst Parasitol 9:213–219CrossRefGoogle Scholar
  7. Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83(4):575–583CrossRefPubMedGoogle Scholar
  8. Caspary WF (1992) Physiology and pathophysiology of intestinal absorption. Am J Clin Nutr 55:299–308CrossRefGoogle Scholar
  9. Chagas EC, Maciel PO, Aquino-Pereira SL (2015) Infecções por acantocéfalos: um problema para a produção de peixes. In: Tavares-Dias M, Mariano WS (eds) Aquicultura no Brasil: novas perspectivas. Editora Pedro e João, São Carlos, pp 305–328Google Scholar
  10. Crompton DWT (1973) The sites occupied by some parasitic helminths in the alimentary tract of vertebrates. Biol Rev 48(1):27–83CrossRefPubMedGoogle Scholar
  11. Dalfovo MS, Lana RA, Silveira A (2008) Métodos quantitativos e qualitativos: um resgate teórico. Revista Interdisciplinar Científica Aplicada 2(4):01–13Google Scholar
  12. De Almeida LC, Lundstedt LM, Moraes G (2006) Digestive enzyme responses of tambaqui (Colossoma macropomum) fed on different levels of protein and lipid. Aquac Nutr 12(6):443–450CrossRefGoogle Scholar
  13. De Almeida LC, Avilez IM, Honorato CA, Hori TSF, Moraes G (2011) Growth and metabolic responses of tambaqui (Colossoma macropomum) fed different levels of protein and lipid. Aquac Nutr 17(2):e253–e262CrossRefGoogle Scholar
  14. Dezfuli BS, Giari L, Simoni E, Bosi G, Manera M (2002) Histopathology, immunohistochemistry and ultrastructure of the intestine of Leuciscus cephalus (L.) naturally infected with Pomphorhynchus laevis (Acanthocephala). J Fish Dis 25(1):7–14CrossRefGoogle Scholar
  15. Dezfuli BS, Giari L, Lui A, Squerzanti S, Castaldelli G, Shinn AP, Manera M, Lorenzoni M (2012) Proliferative cell nuclear antigen (PCNA) expression in the intestine of Salmo trutta trutta naturally infected with an acanthocephalan. Parasit Vectors 5:198CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dezfuli BS, Castaldelli G, Giari L (2017) Histopathological and ultrastructural assessment of two mugilid species infected with myxozoans and helminths. J Fish Dis 00:1–9Google Scholar
  17. Gomes LC, Simões LN, Araújo-Lima CARM (2010) Tambaqui (Colossoma macropomum). In: Baldisserotto B, Gomes LC (eds) Espécies nativas para piscicultura no Brasil, 2nd edn. Editora UFSM, Santa Maria, pp 175–204Google Scholar
  18. Grey AJ, Hayunga EG (1980) Evidence for alternative site selection by Glaridacris laruei (Cestoidea: Caryophyllidea) as a result of interspecific competition. J Parasitol 66(2):371–372CrossRefGoogle Scholar
  19. Hakim Y, Harpaz S, Uni Z (2009) Expression of brush border enzymes and transporters in the intestine of European sea bass (Dicentrarchus labrax) following feed deprivation. Aquaculture 290:110–115CrossRefGoogle Scholar
  20. Harpaz S, Uni Z (1999) Activity of intestinal mucosal brush border membrane enzymes in relation to the feeding habits of three aquaculture fish species. Comp Biochem Physiol 124:155–160CrossRefGoogle Scholar
  21. Harpaz S, Hakim Y, Slosman T, Eroldogan OT (2005) Effects of adding salt to the diet of Asian sea bass Lates calcarifer reared in fresh or salt water recirculating tanks, on growth and brush border enzyme activity. Aquaculture 248:315–324CrossRefGoogle Scholar
  22. Hassanine RM, Al-Jahdali MO (2007) Ecological comments on the intestinal helminths of the rabbitfish Siganus rivulatus (Teleostei, Siganidae) from the northern Red Sea. Acta Parasitol 52(3):278–285CrossRefGoogle Scholar
  23. Herlyn H, Taraschewski H (2017) Evolutionary anatomy of the muscular apparatus involved in the anchoring of Acanthocephala to the intestinal wall of their vertebrate hosts. Parasitol Res 116(4):1207–1225CrossRefPubMedGoogle Scholar
  24. Herlyn H, Piskurek O, Schmitz J, Ehlers U, Zischler H (2003) The syndermatan phylogeny and the evolution of acanthocephalan endoparasitism as inferred from 18S rDNA sequences. Mol Phylogenet Evol 26(1):155–164CrossRefPubMedGoogle Scholar
  25. Jerônimo GT, Pádua SB, Belo MAA, Chagas EC, Taboga SR, Maciel PO, Martins ML (2017) Neoechinorhynchus buttnerae (Acanthocephala) infection in farmed Colossoma macropomum: a pathological approach. Aquaculture 469:124–127CrossRefGoogle Scholar
  26. Kennedy CR (2006) Ecology of Acanthocephala. Cambridge University Press, Cambridge, p 249Google Scholar
  27. Kim SR, Lee JS, Kim JH, Oh MJ, Kim CS, Park MA, Park JJ (2011) Fine structure of Longicollum pagrosomi (Acanthocephala: Pomphorhynchidae) and intestinal histopathology of the red sea bream, Pagrus major, infected with acanthocephalans. Parasitol Res 109(1):175–184CrossRefPubMedGoogle Scholar
  28. Lourenço FS (2017) O ciclo de vida de Neoechinorhynchus (Neoechinorhynchus) buttnerae Golvan, 1956 (Eoacanthocephala: Neoechinorhynchidae) parasito do Colossoma macropomum (Cuvier, 1818) (Characiformes: Characidae) da Amazônia brasileira. Dissertação de mestrado. Pós-graduação em Biologia de Água Doce e Pesca Interior, Manaus-AMGoogle Scholar
  29. Malta JCO, Gomes ALS, Andrade SMS, Varella AMB (2001) Infestações maciças por acantocéfalos, Neoechinorhynchus buttnerae Golvan, 1956, (Eoacanthocephala: Neoechinorhynchidae) em tambaquis jovens Colossoma macropomum (Cuvier, 1818) cultivados na Amazônia Central. Acta Amazon 31(1):133–143CrossRefGoogle Scholar
  30. Martins ML, Fujimoto RY, Andrade PM, Tavares Dias M (2000) Recent studies on Neoechinorhynchus curemai Noronha, 1973 (Acanthocephala:Neoechinorhynchidae) in Prochilodus lineatus, Valenciennes, 1836 from Volta Grande Reservoir, MG, Brazil. Braz J Biol 60(4):673–682PubMedGoogle Scholar
  31. Martins ML, Moraes FR, Fujimoto RY, Onaka EM, Quintana CIF (2001) Prevalence and histopathology of Neoechinorhynchus curemai Noronha, 1973 (Acanthocephala: Neoechinorhynchidae) in Prochilodus lineatus Valenciennes, 1836 from Volta Grande Reservoir, MG, Brazil. Braz J Biol 61(3):517–522CrossRefPubMedGoogle Scholar
  32. Matos LV, Oliveira MIB, Gomes ALS, Silva GS (2017) Morphological and histochemical changes associated with massive infection by Neoechinorhynchus buttnerae (Acanthocephala: Neoechinorhynchidae) in the farmed freshwater fish Colossoma macropomum Cuvier, 1818 from the Amazon State, Brazil. Parasitol Res 116:1029–1037.  https://doi.org/10.1007/s00436-017-5384-3 CrossRefPubMedGoogle Scholar
  33. Melo FTV, Rodrigues RAR, Giese EG, Gardner SL, Santos JN (2014) Histopathologic aspects in Plagioscion squamosissimus (HECKEL, 1940) induced by Neoechinorhynchus veropesoi, metacestodes and anisakidae juveniles. Braz J Vet Parasitol 23(2):224–230CrossRefGoogle Scholar
  34. Near TJ, Garey JR, Nadler SA (1998) Phylogenetic relationships of the acanthocephalan inferred from 18s ribosomal DNA sequences. Mol Phylogenet Evol 10(3):287–298CrossRefPubMedGoogle Scholar
  35. Neto AR (2006) Simulação hidrológica na Amazônia: Rio Madeira. Rio de Janeiro: UFRJ. 178p. Tese de Doutorado. COPPE/UFRJ. Engenharia CivilGoogle Scholar
  36. Nkwengulila G, Miwita C (2004) Spatial distribution of parasites along the gut of the catfish Clarias gariepinus (Burchell, 1822) (Clariidae) from the Mwanza Gulf, Lake Victoria. Tanz J Sci 30(1):63–70Google Scholar
  37. Ogawa K (2015) Diseases of cultured marine fishes caused by Platyhelminthes (Monogenea, Digenea, Cestoda). Parasitology 142(1):178–195.  https://doi.org/10.1017/S0031182014000808 CrossRefPubMedGoogle Scholar
  38. Oliveira AM, Silva MNP, Almeida-Val VMF, Val AL (2012) Characterization of fish culture in meso-regions of the Amazonas state, Brazilian Amazon. Rev Colombiana Cienc Anim 4(1):154–162Google Scholar
  39. Poleksic V, Mitrovic-Tutundzic V (1994) Fish gills as a monitor of subletal and chronic effects of pollution. In: Muller R, Lloyd R (eds) Sublethal and chronic effects of pollutants on freshwater fish. Blacwell Sci, Apud RIGOLIN, Cambridge, pp 339–352Google Scholar
  40. Ross MH, Pawlina W (2016) Histologia: texto e atlas em correlação com a biologia celular e molecular, 7th edn. Guanabara Koogan, Rio de JaneiroGoogle Scholar
  41. Rotta MA (2003) Aspectos Gerais da Fisiologia e Estrutura do Sistema Digestivo dos Peixes Relacionados à Piscicultura. Embrapa Pantanal, Corumbá, MS. ISSN 1517-1973Google Scholar
  42. Sanil NK, Asokan PK, John L, Vijayan KK (2011) Pathological manifestations of the acanthocephalan parasite, Tenuiproboscis sp. in the mangrove red snapper (Lutjanus argentimaculatus) (Forsskål, 1775), a candidate species for aquaculture from Southern India. Aquaculture 310:259–266CrossRefGoogle Scholar
  43. Silva RZ, Pereira JJ, Cousin JCB (2014) Histological patterns of the intestinal attachment of Corynosoma australe (Acanthocephala: Polymorphidae) in Arctocephalus australis (Mammalia: Pinnipedia). J Parasit Dis 38(4):410–416CrossRefPubMedGoogle Scholar
  44. Soler-Jiménez LC, Paredes-Trujillo AI, Vidal-Martínez VM (2017) Helminth parasites of finfish commercial aquaculture in Latin America. J Helminthol 91(2):110–136CrossRefPubMedGoogle Scholar
  45. Taraschewski H (2000) Host-parasite interactions in Acanthocephala: a morphological approach. Adv Parasitol 46:1–179CrossRefPubMedGoogle Scholar
  46. Tibaldi E, Hakim Y, Uni Z, Tulli F, de Francesco M, Luzzana U, Harpaz S (2006) Effects of the partial substitution of dietary fish meal by differently processed soybean meals on growth performance, nutrient digestibility and activity of intestinal brush border enzymes in the European sea bass (Dicentrarchus labrax). Aquaculture 261(1):182–193CrossRefGoogle Scholar
  47. Uglem CL, Read CP (1973) Moniliformis dubius: uptake of leucine and alanine by adults. Exp Parasitol 34(1):148–153CrossRefPubMedGoogle Scholar
  48. Unger P, Palm HW (2017) Parasite risk of maricultured rainbow trout (Oncorhynchus mykiss Walbaum, 1792) in the Western Baltic Sea, Germany. Aquac Int 25:975–989.  https://doi.org/10.1007/s10499-016-0096-8 CrossRefGoogle Scholar
  49. Violante-González J, Villalba-Vásquez PJ, Monks S, García-Ibáñez S, Rojas-Herrera AA, Flores-Garza R (2016) Reproductive traits of the acanthocephalan Neoechinorhynchus brentnickoli in the definitive host. Invertebr Biol 136(1):5–14CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lídia Silva Aguiar
    • 1
  • Maria Inês Braga de Oliveira
    • 1
  • Lorena Vieira de Matos
    • 1
  • Ana Lúcia Silva Gomes
    • 1
  • Jesaías Ismael da Costa
    • 2
  • Grazyelle Sebrenski da Silva
    • 1
  1. 1.Department of MorphologyFederal University of AmazonasManausBrazil
  2. 2.Aquaculture Center – CAUNESPJaboticabalBrazil

Personalised recommendations