Parasitology Research

, Volume 117, Issue 4, pp 1095–1104 | Cite as

The Trypanosoma cruzi RNA-binding protein RBP42 is expressed in the cytoplasm throughout the life cycle of the parasite

  • R. Tyler Weisbarth
  • Anish Das
  • Paul Castellano
  • Michael A. Fisher
  • Han Wu
  • Vivian Bellofatto
Original Paper

Abstract

Trypanosoma cruzi, the protozoan parasite that causes Chagas disease in humans, has a complex life cycle that promotes survival in disparate environments. In each environment, the parasite must fine-tune its metabolic pathways to divide and multiply. In the absence of recognizable transcriptional gene regulation, it is apparent that protein levels are determined by post-transcriptional mechanisms. Post-transcriptional gene control is influenced by RNA-binding proteins that target mRNAs in the cell’s cytoplasm. To initiate the study of post-transcriptional activities in T. cruzi, we studied this organism’s ortholog of RBP42, a trypanosomal RNA-binding protein. RBP42 was originally detected in Trypanosoma brucei and was shown to target a subset of mRNAs that encode proteins governing central carbon metabolism. T. cruzi RBP42 structurally resembles T. brucei RBP42, sharing an NTF2 domain at its amino terminus and a single RNA-binding domain (specifically, the RNA recognition motif, or RRM), at its carboxy terminus. A phylogenetic analysis reveals that an NTF2 and a single RRM are distinguishing features of all RBP42 orthologs within the broad kinetoplastid grouping. T. cruzi RBP42 is expressed in all life cycle stages of the parasite as determined by immunoblot and immunofluorescence microscopy. In each case, the protein is localized to the cytoplasm, indicating a role for T. cruzi RBP42 in post-transcriptional activities in all stages of the parasite life cycle. We speculate that RBP42 influences the dynamic metabolic pathways responsible for parasite infection and transmission.

Keywords

Trypanosomes Trypanosoma cruzi mRNA-binding proteins Immunofluorescence Transgenic parasites Chagas disease 

Supplementary material

436_2018_5787_MOESM1_ESM.pdf (20 kb)
Figure S1 (PDF 20 kb)
436_2018_5787_MOESM2_ESM.pdf (46 kb)
Table S1 (PDF 45 kb)

References

  1. Aibara S, Valkov E, Lamers M, Stewart M (2015) Domain organization within the nuclear export factor Mex67:Mtr2 generates an extended mRNA binding surface. Nucleic Acids Res 43(3):1927–1936.  https://doi.org/10.1093/nar/gkv030 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Araujo PR, Teixeira SM (2011) Regulatory elements involved in the post-transcriptional control of stage-specific gene expression in Trypanosoma cruzi: a review. Mem Inst Oswaldo Cruz 106(3):257–266.  https://doi.org/10.1590/S0074-02762011000300002 CrossRefPubMedGoogle Scholar
  3. Archer SK, Luu VD, de Queiroz RA, Brems S, Clayton C (2009) Trypanosoma brucei PUF9 regulates mRNAs for proteins involved in replicative processes over the cell cycle. PLoS Pathog 5(8):e1000565.  https://doi.org/10.1371/journal.ppat.1000565 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bastin P, Bagherzadeh Z, Matthews KR, Gull K (1996) A novel epitope tag system to study protein targeting and organelle biogenesis in Trypanosoma brucei. Mol Biochem Parasitol 77(2):235–239.  https://doi.org/10.1016/0166-6851(96)02598-4 CrossRefPubMedGoogle Scholar
  5. Bern C (2015) Chagas’ disease. N Engl J Med 373(5):456–466.  https://doi.org/10.1056/NEJMra1410150 CrossRefPubMedGoogle Scholar
  6. Blackinton JG, Keene JD (2014) Post-transcriptional RNA regulons affecting cell cycle and proliferation. Semin Cell Dev Biol 34:44–54.  https://doi.org/10.1016/j.semcdb.2014.05.014 CrossRefPubMedGoogle Scholar
  7. Bonney KM (2014) Chagas disease in the 21st century: a public health success or an emerging threat? Parasite 21:11.  https://doi.org/10.1051/parasite/2014012 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Buchan DW, Minneci F, Nugent TC, Bryson K, Jones DT (2013) Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res 41 (web server issue):W349–357 doi: https://doi.org/10.1093/nar/gkt381
  9. Camargo EP (1964) Growth and differentiation in Trypanosoma Cruzi. I. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop Sao Paulo 6:93–100PubMedGoogle Scholar
  10. DaRocha WD, Silva RA, Bartholomeu DC, Pires SF, Freitas JM, Macedo AM, Vazquez MP, Levin MJ, Teixeira SM (2004) Expression of exogenous genes in Trypanosoma cruzi: improving vectors and electroporation protocols. Parasitol Res 92(2):113–120.  https://doi.org/10.1007/s00436-003-1004-5 CrossRefPubMedGoogle Scholar
  11. Das A, Bellofatto V, Rosenfeld J, Carrington M, Romero-Zaliz R, del Val C, Estévez AM (2015) High throughput sequencing analysis of Trypanosoma brucei DRBD3/PTB1-bound mRNAs. Mol Biochem Parasitol 199(1–2):1–4.  https://doi.org/10.1016/j.molbiopara.2015.02.003 CrossRefPubMedGoogle Scholar
  12. Das A, Morales R, Banday M, Garcia S, Hao L, Cross GA, Estevez AM, Bellofatto V (2012) The essential polysome-associated RNA-binding protein RBP42 targets mRNAs involved in Trypanosoma brucei energy metabolism. RNA 18(11):1968–1983.  https://doi.org/10.1261/rna.033829.112 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43(W1):W389–W394.  https://doi.org/10.1093/nar/gkv332 CrossRefPubMedPubMedCentralGoogle Scholar
  14. El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C, Ghedin E, Peacock C, Bartholomeu DC, Haas BJ, Tran AN, Wortman JR, Alsmark UC, Angiuoli S, Anupama A, Badger J, Bringaud F, Cadag E, Carlton JM, Cerqueira GC, Creasy T, Delcher al, Djikeng A, Embley TM, Hauser C, Ivens AC, Kummerfeld SK, Pereira-Leal JB, Nilsson D, Peterson J, Salzberg SL, Shallom J, Silva JC, Sundaram J, Westenberger S, White O, Melville SE, Donelson JE, Andersson B, Stuart KD, Hall N (2005) Comparative genomics of trypanosomatid parasitic protozoa. Science 309(5733):404–409, DOI:  https://doi.org/10.1126/science.1112181
  15. Gazestani VH, Yip CW, Nikpour N, Berghuis N, Salavati R (2017) TrypsNetDB: an integrated framework for the functional characterization of trypanosomatid proteins. PLoS Negl Trop Dis 11(2):e0005368.  https://doi.org/10.1371/journal.pntd.0005368 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38(web server issue):W695–W699.  https://doi.org/10.1093/nar/gkq313 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hieronymus H, Silver PA (2003) Genome-wide analysis of RNA–protein interactions illustrates specificity of the mRNA export machinery. Nat Genet 33(2):155–161.  https://doi.org/10.1038/ng1080 CrossRefPubMedGoogle Scholar
  18. Jimenez V (2014) Dealing with environmental challenges: mechanisms of adaptation in Trypanosoma cruzi. Res Microbiol 165(3):155–165.  https://doi.org/10.1016/j.resmic.2014.01.006 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Keene JD (2007) RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8(7):533–543.  https://doi.org/10.1038/nrg2111 CrossRefPubMedGoogle Scholar
  20. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858.  https://doi.org/10.1038/nprot.2015.053 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kolev NG, Ullu E, Tschudi C (2014) The emerging role of RNA-binding proteins in the life cycle of Trypanosoma brucei. Cell Microbiol 16(4):482–489.  https://doi.org/10.1111/cmi.12268 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lander N, Li ZH, Niyogi S, Docampo R (2015) CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment. MBio 6(4):e01012–e01015.  https://doi.org/10.1128/mBio.01012-15
  23. Marchini FK, de Godoy LM, Rampazzo RC, Pavoni DP, Probst CM, Gnad F, Mann M, Krieger MA (2011) Profiling the Trypanosoma cruzi phosphoproteome. PLoS One 6(9):e25381.  https://doi.org/10.1371/journal.pone.0025381 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Nett IR, Martin DM, Miranda-Saavedra D, Lamont D, Barber JD, Mehlert A, Ferguson MA (2009) The phosphoproteome of bloodstream form Trypanosoma brucei, causative agent of African sleeping sickness. Mol Cell Proteomics 8(7):1527–38Google Scholar
  25. Nicholas K, Nicholas H, Deerfield DW (1997) GeneDoc: analysis and visualization of genetic variation. EMBNEW News 4:14Google Scholar
  26. Rassi A, Jr., Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375(9723):1388–1402 doi: https://doi.org/10.1016/S0140-6736(10)60061-X
  27. Romaniuk MA, Cervini G, Cassola A (2016) Regulation of RNA binding proteins in trypanosomatid protozoan parasites. World J Biol Chem 7(1):146–157.  https://doi.org/10.4331/wjbc.v7.i1.146 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Roy A, Yang J, Zhang Y (2012) COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res 40(web server issue):W471–W477.  https://doi.org/10.1093/nar/gks372 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7(1):539.  https://doi.org/10.1038/msb.2011.75 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Tonelli RR, Augusto Lda S, Castilho BA, Schenkman S (2011) Protein synthesis attenuation by phosphorylation of eIF2alpha is required for the differentiation of Trypanosoma cruzi into infective forms. PLoS One 6(11):e27904.  https://doi.org/10.1371/journal.pone.0027904 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Trindade S, Rijo-Ferreira F, Carvalho T, Pinto-Neves D, Guegan F, Aresta-Branco F, Bento F, Young SA, Pinto A, Van Den Abbeele J, Ribeiro RM, Dias S, Smith TK, Figueiredo LM (2016) Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice. Cell Host Microbe 19(6):837–848.  https://doi.org/10.1016/j.chom.2016.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Urbaniak MD, Martin DM, Ferguson MA (2013) Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei. J Proteome Res 12(5):2233–2244.  https://doi.org/10.1021/pr400086y CrossRefPubMedPubMedCentralGoogle Scholar
  33. Vazquez MP, Levin MJ (1999) Functional analysis of the intergenic regions of TcP2beta gene loci allowed the construction of an improved Trypanosoma cruzi expression vector. Gene 239(2):217–225.  https://doi.org/10.1016/S0378-1119(99)00386-8 CrossRefPubMedGoogle Scholar
  34. Zhang Y (2009) I-TASSER: fully automated protein structure prediction in CASP8. Proteins 77 Suppl 9(S9):100–113.  https://doi.org/10.1002/prot.22588 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Microbiology, Biochemistry and Molecular GeneticsRutgers—NJ Medical SchoolNewarkUSA
  2. 2.Regeneron PharmaceuticalsTarrytownUSA
  3. 3.Rutgers Graduate School of Biomedical Science PHRIRutgers—NJ Medical SchoolNewarkUSA

Personalised recommendations