Advertisement

Parasitology Research

, Volume 117, Issue 4, pp 1013–1024 | Cite as

Diversity of Mammomonogamus (Nematoda: Syngamidae) in large African herbivores

  • Barbora Červená
  • Kristýna Hrazdilová
  • Peter Vallo
  • Barbora Pafčo
  • Tereza Fenyková
  • Klára Judita Petrželková
  • Angelique Todd
  • Nikki Tagg
  • Nadege Wangue
  • Estevam G. Lux Hoppe
  • Marcela Figuerêdo Duarte Moraes
  • Ivan Moura Lapera
  • Andressa de Souza Pollo
  • Ana Cláudia Alexandre de Albuquerque
  • David Modrý
Original Paper

Abstract

Four species of Mammomonogamus are known from large African herbivores. A recent study demonstrated that a single Mammomonogamus species was shared by both western lowland gorillas (Gorilla gorilla gorilla) and African forest elephants (Loxodonta cyclotis) in Central African Republic, suggesting lower species diversity than previously described in literature. We examined more than 500 fecal samples collected from sympatric African forest elephants, western lowland gorillas, and African forest buffaloes (Syncerus caffer nanus) at four study sites across Central Africa and examined them by coproscopic methods to detect Mammomonogamus eggs, which were found at three of the study sites. Subsequently, sequences of 18S rDNA, 28S rDNA, and cox1 amplified from individual eggs were analyzed. Phylogenetic analyses of both nuclear and mitochondrial DNA revealed two clades: one formed by sequences originating from Gabonese buffaloes and the other comprising gorillas and elephants. The gorilla–elephant clade was further differentiated depending on the locality. We show the existence of at least two distinct species of Mammomonogamus, M. loxodontis in elephants and gorillas and M. nasicola in buffaloes. The available information on Mammomonogamus in African herbivores is reviewed.

Keywords

Mammomonogamus Gorilla African forest elephant African forest buffalo Parasite sharing Host specificity 

Notes

Acknowledgements

We would like to thank the government of the Central African Republic, the World Wildlife Fund, the Ministère de l’Education Nationale, de l’Alphabétisation, de l’Enseignement Supérieur, et de la Recherche for granting permission and providing permits to conduct our research in the Central African Republic and the Primate Habituation Programme for logistical support in the field. We are thankful to the Centre National de la Recherche Scientifique et Technologique (CENAREST) and the Agence National des Parcs Nationaux (ANPN) for research authorization in Gabon. We thank SFM Safari Gabon for hosting our research and seeing the value of health monitoring as part of the development of ape tourism programs, especially to Matthew H. Shirley and Emilie Fairet as well as our field assistants Pierre Bukosso and Kharl Remanda for their significant support in the field. We express our thanks to the Ministère des Fôrets et de la Faune and Ministère de la Recherche Scientifique et de l’Innovation in Cameroon for permitting our research. We thank the Projet Grands Singes, Centre for Research and Conservation, Royal Zoological Society of Antwerp, and WWF Kudu-Zumbo Programme for providing their material and logistical support in the field. We would also like to thank all trackers and research assistants from all study sites, especially to Arlette Tchankugni Nguemfo and Charmance Irene Nkombou for helping with sample collection. We thank Jana Bulantová and her team from the Department of Parasitology, Faculty of Science, Charles University, Prague, for providing us with specimens of Syngamus sp. collected from a crow.

Funding information

This work was supported by the Czech Science Foundation (15-05180S) and derived from the Laboratory for Infectious Diseases Common to Humans and (non-Human) Primates from Czech Republic (HPI-Lab) and was co-financed by the European Social Fund and the state budget of the Czech Republic (project OPVK CZ.1.07/2.3.00/20.0300). Further support came from “CEITEC”—Central European Institute of Technology (CZ.1.05/1.100/02.0068), the European Regional Development Fund, and The Institute of Vertebrate Biology, Czech Academy of Sciences (RVO: 68081766). The work was supported by project LO1218 with financial support from the Ministry of Education, Youth, and Sports of the Czech Republic under the NPU I program. We acknowledge a grant for the development of research organization (RVO: RO0516).

Supplementary material

436_2018_5777_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 16 kb)
436_2018_5777_MOESM2_ESM.docx (17 kb)
ESM 2 (DOCX 16 kb)
436_2018_5777_MOESM3_ESM.docx (16 kb)
ESM 3 (DOCX 15 kb)
436_2018_5777_Fig5_ESM.gif (8 kb)
Figure S4

A phylogenetic tree resulting from Bayesian inference of 375 bp of cox1 sequence of 101 taxa comprising Mammomonogamus spp. and other available strongylids (GIF 8 kb)

436_2018_5777_MOESM4_ESM.tif (5.7 mb)
High Resolution Image (TIFF 5875 kb)

References

  1. Bekhuis PDBM, De Jong CB, Prins HHT (2008) Diet selection and density estimates of forest buffalo in Campo-Ma’an National Park, Cameroon. Afr J Ecol 46(4):668–675.  https://doi.org/10.1111/j.1365-2028.2008.00956.x CrossRefGoogle Scholar
  2. Blake S (2002) The ecology of forest elephant distribution and its implication for conservation. Dissertation University of EdinburghGoogle Scholar
  3. Blake S, Strindberg S, Boudjan P, Makombo C, Bila-Isia I, Ilambu O, Grossmann F, Bene-Bene L, de Semboli B, Mbenzo V, S’hwa D, Bayogo R, Williamson L, Fay M, Hart J, Maisels F (2007) Forest elephant crisis in the Congo Basin. PLoS Biol 5(4):e111.  https://doi.org/10.1371/journal.pbio.0050111 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Blouin MS (2002) Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. Int J Parasitol 32(5):527–531.  https://doi.org/10.1016/S0020-7519(01)00357-5 CrossRefPubMedGoogle Scholar
  5. Blouin MS, Yowell CA, Courtney CH, Dame JB (1998) Substitution bias, rapid saturation, and the use of mtDNA for nematode systematics. Mol Biol Evol 15:1719–1727CrossRefPubMedGoogle Scholar
  6. Budischak SA, Jolles AE, Ezenwa VO (2012) Direct and indirect costs of co-infection in the wild: linking gastrointestinal parasite communities, host hematology and immune function. Int J Parasitol Parasites Wildl 1:2–12.  https://doi.org/10.1016/j.ijppaw.2012.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Červená B, Vallo P, Pafčo B, Jirků K, Jirků M, Petrželková KJ, Todd A, Turkalo AK, Modrý D (2017) Host specificity and basic ecology of Mammomonogamus (Nematoda, Syngamidae) from lowland gorillas and forest elephants in Central African Republic. Parasitology 144(08):1–10.  https://doi.org/10.1017/S0031182017000221 Google Scholar
  8. Chilton NB, Huby-Chilton F, Gasser RB (2003) First complete large subunit ribosomal RNA sequence and secondary structure for a parasitic nematode: phylogenetic and diagnostic implications. Mol Cell Probes 17(1):33–39.  https://doi.org/10.1016/S0890-8508(02)00107-X CrossRefPubMedGoogle Scholar
  9. Chilton NB, Huby-Chilton F, Gasser RB, Beveridge I (2006) The evolutionary origins of nematodes within the order Strongylida are related to predilection sites within hosts. Mol Phylogenet Evol 40:118–128.  https://doi.org/10.1016/j.ympev.2006.01.003 CrossRefPubMedGoogle Scholar
  10. Clifford SL, Anthony NM, Bawe-Johnson M, Abernethy KA, Tutin CE, White LJ, Bermejo M, Goldsmith ML, McFarland K, Jeffery KJ, Bruford MW, Wickings EJ (2004) Mitochondrial DNA phylogeography of western lowland gorillas (Gorilla gorilla gorilla). Mol Ecol 13(6):1551–1565.  https://doi.org/10.1111/j.1365-294X.2004.02140.x CrossRefPubMedGoogle Scholar
  11. Combes C (1991) Evolution of parasite life cycles. In: Toft CA, Aeschlimann A, Bolis L (eds) Parasite-host associations: coexistence or conflict? Oxford University Press, Oxford, pp 62–82Google Scholar
  12. Cooper N, Griffin R, Franz M, Omotayo M, Nunn CL (2012) Phylogenetic host specificity and understanding parasite sharing in primates. Ecol Lett 15(12):1370–1377.  https://doi.org/10.1111/j.1461-0248.2012.01858.x CrossRefPubMedGoogle Scholar
  13. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  14. Freeman AS, Kinsella JM, Cipoletta C, Deem SL Karesh WB (2004) Endoparasites of western lowland gorillas (Gorilla gorilla gorilla) at Bai Hokou, Central African Republic. J Wildl Dis 40(4):775–781.  https://doi.org/10.7589/0090-3558-40.4.775 CrossRefPubMedGoogle Scholar
  15. Fünfstück T, Arandjelovic M, Morgan DB, Sanz C, Breuer T, Stokes EJ, Reed P, Olson SH, Cameron K, Ondzie A, Peeters M, Kühl HS, Cipoletta C, Todd A, Masi S, Doran-Sheehy DM, Bradley BJ, Vigilant L (2014) The genetic population structure of wild western lowland gorillas (Gorilla gorilla gorilla) living in continuous rain forest. Am J Primatol 76(9):868–878.  https://doi.org/10.1002/ajp.22274 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fünfstück T, Vigilant L (2015) The geographic distribution of genetic diversity within gorillas. Am J Primatol 77(9):974–985.  https://doi.org/10.1002/ajp.22427 CrossRefGoogle Scholar
  17. Gedoelst L (1924) Un syngame parasite de l’hippopotame. Ann Parasitol 2(4):307–311.  https://doi.org/10.1051/parasite/1924024307 CrossRefGoogle Scholar
  18. Ghesquière J (1934) Sur la répartition géographique de deux vers syngames observés au Congo Belge. C R Somm Séanc Soc Biogéogr 89:10–12Google Scholar
  19. Graber M, Euzeby J, Gevrey J, Troncy PM, Thal J (1971) La mammomonogamose des ruminants domestiques et sauvages. Rev Élev Méd Vét Pays Trop 24(4):525–541.  https://doi.org/10.19182/remvt.7717 CrossRefPubMedGoogle Scholar
  20. Graber M, Euzeby J, Gevrey J, Troncy PM (1972) Les Mammomonogamus des ruminants domestiques et sauvages. Ann Parasitol 47(2):225–241.  https://doi.org/10.1051/parasite/1972472225 CrossRefGoogle Scholar
  21. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  22. Hasegawa H, Modrý D, Kitagawa M, Shutt KA, Todd A, Kalousová B, Profousová I, Petrželková KJ (2014) Humans and great apes cohabiting the forest ecosystem in Central African Republic harbour the same hookworms. PLoS Negl Trop Dis 8(3):e2715.  https://doi.org/10.1371/journal.pntd.0002715 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109.  https://doi.org/10.1093/biomet/57.1.97 CrossRefGoogle Scholar
  24. Head JS, Boesch C, Robbins MM, Rabanal LI, Makaga L, Kühl HS (2013) Effective sociodemographic population assessment of elusive species in ecology and conservation management. Ecol Evol 3(9):2903–2916.  https://doi.org/10.1002/ece3.670 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Herd RP (1986) Serum pepsinogen concentrations of ponies naturally infected with Trichostrongylus axei. Equine Vet J 18(6):490–491.  https://doi.org/10.1111/j.2042-3306.1986.tb03700.x CrossRefPubMedGoogle Scholar
  26. Hu M, Chilton NB, Zhu XQ, Gasser RB (2002) Single-strand conformation polymorphism-based analysis of mitochondrial cytochrome c oxidase subunit 1 reveals significant substructuring in hookworm populations. Electrophoresis 23(1):27–34.  https://doi.org/10.1002/1522-2683(200201)23:1<27::AID-ELPS27>3.0.CO;2-7 CrossRefPubMedGoogle Scholar
  27. Ishida Y, Georgiadis NJ, Hondo T, Roca AL (2013) Triangulating the provenance of African elephants using mitochondrial DNA. Evol Appl 6(2):253–265.  https://doi.org/10.1111/j.1752-4571.2012.00286.x CrossRefPubMedGoogle Scholar
  28. Jirků-Pomajbíková K, Hůzová Z (2015) Coproscopic techniques. In: Modrý D, Petrželková KJ, Kalousová B, Hasegawa H (eds) Parasites of African great apes: atlas of coproscopic diagnostics. HPI-lab, Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic, pp 14–24Google Scholar
  29. Johnson PTJ, de Roode JC, Fenton A (2015) Why infectious disease research needs community ecology. Science: New York, 349:1259504.  https://doi.org/10.1126/science.1259504
  30. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649.  https://doi.org/10.1093/bioinformatics/bts199 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kinsella JM, Deem SL, Blake S, Freeman AS (2004) Endoparasites of African forest elephant (Loxodonta africana cyclotis) from the Republic of Congo and Central African Republic. Comp Parasitol 71(2):104–110.  https://doi.org/10.1654/4131 CrossRefGoogle Scholar
  32. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2.0. Bioinformatics (Oxf) 23:2947–2948CrossRefGoogle Scholar
  33. Maisels F, Strindberg S, Blake S, Wittemyer G, Hart J, Williamson EA, Aba’a R, Abitsi G, Ambahe RD, Amsini F, Bakabana PC, Hicks TC, Bayogo RE, Bechem M, Beyers RL, Bezangoye AN, Boundja P, Bout N, Akou ME, Bene LB, Fosso B, Greengrass E, Grossmann F, Ikamba-Nkulu C, Ilambu O, Inogwabini BI, Iyenguet F, Kiminou F, Kokangoye M, Kujirakwinja D, Latour S, Liengola I, Mackaya Q, Madidi J, Madzoke B, Makoumbou C, Malanda GA, Malonga R, Mbani O, Mbendzo VA, Ambassa E, Ekinde A, Mihindou Y, Morgan BJ, Motsaba P, Moukala G, Mounguengui A, Mowawa BS, Ndzai C, Nixon S, Nkumu P, Nzolani F, Pintea L, Plumptre A, Rainey H, de Semboli BB, Serckx A, Stokes E, Turkalo A, Vanleeuwe H, Vosper A, Warren Y (2013) Devastating decline of forest elephants in Central Africa. PLoS One 8(3):e59469.  https://doi.org/10.1371/journal.pone.0059469 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Martin C, Pastoret PP, Brochier B, Humblet MF, Saegerman C (2011) A survey of the transmission of infectious diseases/infections between wild and domestic ungulates in Europe. Vet Res 42(1):70.  https://doi.org/10.1186/1297-9716-42-70 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Masi S, Cipoletta S, Robbins MM (2009) Western lowland gorillas (Gorilla gorilla gorilla) change their activity patterns in response to frugivory. Am J Primatol 71(2):91–100.  https://doi.org/10.1002/ajp.20629 CrossRefPubMedGoogle Scholar
  36. Masi S, Gustafsson E, Saint Jalme M, Narat V, Todd A, Bomsel M-C, Krief S (2012) Unusual feeding behavior in wild great apes, a window to understand origins of self-medication in humans: role of sociality and physiology on learning process. Physiol Behav 105(2):337–349.  https://doi.org/10.1016/j.physbeh.2011.08.012 CrossRefPubMedGoogle Scholar
  37. Miranda RR, Tennessen JA, Blouin MS, Rabelo ÉM (2008) Mitochondrial DNA variation of the dog hookworm Ancylostoma caninum in Brazilian populations. Vet Parasitol 151(1):61–67.  https://doi.org/10.1016/j.vetpar.2007.09.027 CrossRefPubMedGoogle Scholar
  38. Morgan BJ (2007) Group size, density and biomass of large mammals in the Réserve de Faune du Petit Loango, Gabon. Afr J Ecol 45(4):508–518.  https://doi.org/10.1111/j.1365-2028.2007.00761.x CrossRefGoogle Scholar
  39. Morgan BJ, Lee PC (2007) Forest elephant group composition, frugivory and coastal use in the Réserve de Faune du Petit Loango, Gabon. Afr J Ecol 45(4):519–526.  https://doi.org/10.1111/j.1365-2028.2007.00762.x CrossRefGoogle Scholar
  40. Opasina BA, Dipeolu OO (1983) Fatal infection of a West African dwarf sheep with Mammomonogamus nasicola (S. Syngamus nasicola). Zbl Vet Med B 30:313–315CrossRefGoogle Scholar
  41. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14(9):817–818.  https://doi.org/10.1093/bioinformatics/14.9.817 CrossRefPubMedGoogle Scholar
  42. Poulin R (2007a) Host specificity. In: Poulin R (ed) Evolutionary ecology of parasites, 2nd edn. Princeton University Press, Princeton, pp 41–69Google Scholar
  43. Poulin R (2007b) Are there general laws in parasite ecology? Parasitology 134(06):763–776.  https://doi.org/10.1017/S0031182006002150 CrossRefPubMedGoogle Scholar
  44. Poulin R, Keeney DB (2008) Host specificity under molecular and experimental scrutiny. Trends Parasitol 24(1):24–28.  https://doi.org/10.1016/j.pt.2007.10.002 CrossRefPubMedGoogle Scholar
  45. Rabanal LI, Kuehl HS, Mundry R, Robbins MM, Boesch C (2010) Oil prospecting and its impact on large rainforest mammals in Loango National Park, Gabon. Biol Conserv 143(4):1017–1024.  https://doi.org/10.1016/j.biocon.2010.01.017 CrossRefGoogle Scholar
  46. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574.  https://doi.org/10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  47. Sachs R, Debbie JG (1969) A field guide to the recording of parasitic infestation of game animals. Afr J Ecol 7:27–37CrossRefGoogle Scholar
  48. Sachs R, Frank H, Bindernagel JA (1969) New host records for Mammomonogamus in African game animals through application of a simple method of collection. Vet Rec 84:562–563CrossRefPubMedGoogle Scholar
  49. Sachs R, Sachs C (1968) A survey of parasitic infestation of wild herbivores in the Serengeti region in Northern Tanzania and the Lake Rukwa region in Southern Tanzania. Bull Epizoot Dis Afr 16(4):455–472PubMedGoogle Scholar
  50. Setchel JM, Bedjabaga IB, Goossens B, Reed P, Wickings EJ, Knapp LA (2007) Parasite prevalence, abundance, and diversity in a semi-free-ranging colony of Mandrillus sphinx. Int J Primatol 28(6):1345–1362.  https://doi.org/10.1007/s10764-007-9225-6 CrossRefGoogle Scholar
  51. Sheather AL (1923) The detection of intestinal protozoa and mange parasites by a flotation technique. J Comp Pathol Ther 36:266–275.  https://doi.org/10.1016/S0368-1742(23)80052-2 CrossRefGoogle Scholar
  52. Standley CJ, Mugisha L, Adriko M, Arinaitwe M, Rukundo J, Ajarova L, Mopya S, Betson M, Kabatereine NB, Stothard JR (2013) Intestinal schistosomiasis in chimpanzees on Ngamba Island, Uganda: observations on liver fibrosis, schistosome genetic diversity and praziquantel treatment. Parasitology 40(03):285–295.  https://doi.org/10.1017/S0031182012001576 CrossRefGoogle Scholar
  53. Streicker DG, Fenton A, Pedersen AB (2015) Corrigendum to Streicker et al. (2013) Differential sources of host species heterogeneity influence the transmission and control of multi-host parasites. Ecol Lett 18(10):1134–1137.  https://doi.org/10.1111/ele.12477 CrossRefPubMedGoogle Scholar
  54. Strimmer K, von Haeseler A (1997) Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci U S A 94(13):6815–6819.  https://doi.org/10.1073/pnas.94.13.6815 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Telfer S, Lambin X, Birtles R, Beldomenico P, Burthe S, Paterson S, Begon M (2010) Species interactions in a parasite community drive infection risk in a wildlife population. Science 330(6001):243–246.  https://doi.org/10.1126/science.1190333 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tchouto MGP (2004) Plant diversity in a central African rain forest: implications for biodiversity conservation in Cameroon. Dissertation, Wageningen UniversityGoogle Scholar
  57. Traversa D, Kuzmina T, Kharchenko VA, Iorio R, Klei TR, Otranto D (2008) Haplotypic variability within the mitochondrial gene encoding for the cytochrome c oxidase (cox1) of Cylicocyclus nassatus (Nematoda, Strongylida): evidence for an affiliation between parasitic populations and domestic and wild equid hosts. Vet Parasitol 156(3-4):241–247.  https://doi.org/10.1016/j.vetpar.2008.05.031 CrossRefPubMedGoogle Scholar
  58. van den Berghe L (1937) Contribution à l’etude des parasites de l’okapi. Rev Zool Bot Afr 29:141–150Google Scholar
  59. Vercruysse J (1978) La mammomonogamose des zébus en empire centrafrican. Rev Élev Méd Vét Pays Trop 31(4):427–430.  https://doi.org/10.19182/remvt.8113 CrossRefPubMedGoogle Scholar
  60. von Linstow O (1899) Nematoden aus der Berliner Zoologischen Sammlung. Mitt Zool Mus Berl 1:1–28Google Scholar
  61. Vuylsteke C (1935) Etude de quelques nématodes parasites de l’éléphant. Rev Zool Bot Afr 27:319–325Google Scholar
  62. Walker GJ, Plein M, Morgan ER, Vesk PA (2017) Uncertain links in host–parasite networks: lessons for parasite transmission in a multi-host system. Phil Trans R Soc B 372(1719):20160095.  https://doi.org/10.1098/rstb.2016.0095 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Webster JP, Borlase A, Rudge JW (2017) Who acquires infection from whom and how? Disentangling multi-host and multi-mode transmission dynamics in the ‘elimination’ era. Phil Trans R Soc B 372(1719):20160091.  https://doi.org/10.1098/rstb.2016.0091 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Willie J, Petre CA, Tagg N, Lens L (2012) Density of herbaceous plants and distribution of western gorillas in different habitat types in south-east Cameroon. Afr J Ecol 51(1):111–121.  https://doi.org/10.1111/aje.12014 CrossRefGoogle Scholar
  65. Willie J, Tagg N, Petre CA, Pereboom Z, Lens L (2013) Plant selection for nest building by western lowland gorillas in Cameroon. Primates 55(1):41–49.  https://doi.org/10.1007/s10329-013-0363-5 CrossRefPubMedGoogle Scholar
  66. Woolhouse MEJ, Taylor LH, Haydon DT (2001) Population biology of multihost pathogens. Science 292(5519):1109–1112.  https://doi.org/10.1126/science.1059026 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Barbora Červená
    • 1
  • Kristýna Hrazdilová
    • 2
    • 3
  • Peter Vallo
    • 4
    • 5
  • Barbora Pafčo
    • 1
  • Tereza Fenyková
    • 1
  • Klára Judita Petrželková
    • 4
    • 6
    • 7
  • Angelique Todd
    • 8
  • Nikki Tagg
    • 9
  • Nadege Wangue
    • 10
  • Estevam G. Lux Hoppe
    • 11
  • Marcela Figuerêdo Duarte Moraes
    • 11
  • Ivan Moura Lapera
    • 11
  • Andressa de Souza Pollo
    • 11
  • Ana Cláudia Alexandre de Albuquerque
    • 12
  • David Modrý
    • 1
    • 2
    • 6
  1. 1.Department of Pathology and Parasitology, Faculty of Veterinary MedicineUniversity of Veterinary and Pharmaceutical Sciences BrnoBrnoCzech Republic
  2. 2.Central European Institute for Technology (CEITEC)University of Veterinary and Pharmaceutical SciencesBrnoCzech Republic
  3. 3.Department of VirologyVeterinary Research InstituteBrnoCzech Republic
  4. 4.Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
  5. 5.Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
  6. 6.Institute of ParasitologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
  7. 7.Liberec ZooLiberecCzech Republic
  8. 8.WWF, Dzanga-Sangha Protected AreasBanguiCentral African Republic
  9. 9.Projet Grands Singes, Centre for Research and ConservationRoyal Zoological Society of AntwerpAntwerpenBelgium
  10. 10.WWF Kudu-Zumbo ProgrammeCampoCameroon
  11. 11.Universidade Estadual Paulista—UNESP, Faculdade de Ciências Agrárias e Veterinárias, Câmpus de JaboticabalJaboticabalBrazil
  12. 12.Veterinary Medicine and Animal Science SchoolUNESP—São Paulo State UniversityBotucatuBrazil

Personalised recommendations