Advertisement

Parasitology Research

, Volume 117, Issue 2, pp 597–602 | Cite as

Lactobacillus rhamnosus reduces parasite load on Toxocara canis experimental infection in mice, but has no effect on the parasite in vitro

  • Débora Liliane Walcher
  • Luis Augusto Xavier Cruz
  • Paula de Lima Telmo
  • Lourdes Helena Rodrigues Martins
  • Luciana Farias da Costa de Avila
  • Maria Elisabeth Aires Berne
  • Carlos James Scaini
Short Communication

Abstract

Human toxocariasis is a neglected global parasitic zoonosis. The efficacy of drug treatment for this disease has been hindered by the biological complexity of the main etiological agent, the nematode Toxocara canis. Experimental studies have shown the potential of probiotics to promote a reduction in the parasite load of T. canis larvae. This study aimed to evaluate the effect of probiotic Lactobacillus rhamnosus ATCC 7469 on the parasite load of BALB/c mice with acute toxocariasis and evaluate the direct effect of this probiotic on T. canis larvae in vitro. In vivo administration of probiotics reduced the parasite load of T. canis larvae by 53.3% (p = 0.0018) during the early stage of infection in mice. However, when analyzed in vitro, it was observed that the probiotic did not present a deleterious effect on the larvae, as approximately 90% of these remained viable. These results demonstrate the potential of the probiotic L. rhamnosus in the reduction of T. canis larvae in BALB/c mice and suggest it could be used as an alternative means for the controlling of visceral toxocariasis. However, further studies are required to elucidate the mechanisms of action promoted by this probiotic.

Keywords

Visceral larva migrans Control Infection intensity Probiotic Lactobacillus rhamnosus 

Notes

Acknowledgments

We wish to thank the Post-Graduate Program in Parasitology, Universidade Federal de Pelotas (UFPel), the Parasitology Laboratory - Academic Area of the University Hospital – FURG, and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for scholarship grant for studies.

Compliance with ethical standards

This study was approved by the Ethics Committee on Animal Use of the Universidade Federal do Rio Grande (Report No. 032/2014).

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals—statement on the welfare of animals

“All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.”

“All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.”

“This article does not contain any studies with human participants performed by any of the authors.”

References

  1. Agência Nacional de Vigilância Sanitária ANVISA (2016). Alimentos com alegações de propriedades funcionais e ou de saúde, novos alimentos/ingredientes,substâncias bioativas e probióticos. IX – Lista de alegações de propriedade funcional aprovadas. http://www.anvisa.gov.br/alimentos/comissoes/tecno_lista_alega.htm. Accessed 14 February 2017
  2. Avila LFC, Conceição FR, Telmo PL, Dutra GF, Santos DG, Martins LHR, Berne MEA, Silva PEA, Scaini CJ (2012) Saccharomyces boulardii reduces infection intensity of mice with toxocariasis. Vet Parasitol 187(1–2):337–340.  https://doi.org/10.1016/j.vetpar.2012.01.002 CrossRefPubMedGoogle Scholar
  3. Avila LFC, Leon PMM, Moura MQ, Berne MEA, Scaini CJ, Leivas Leite FP (2016) Modulation of IL-12 and IFN-ɣ by probiotic supplementation promotes protection against Toxocara canis infection in mice. Parasite Immunol 38(5):326–330.  https://doi.org/10.1111/pim.12314 CrossRefPubMedGoogle Scholar
  4. Avila LFC, Telmo PL, Martins LHR, Glaeser TA, Conceição FR, Leite FPL, Scaini CJ (2013) Protective effect of the probiotic Saccharomyces boulardii in Toxocara canis infection is not due to direct action on the larvae. Rev Inst Med Trop São Paulo 55(5):363–365.  https://doi.org/10.1590/S0036-46652013000500012 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Basualdo J, Sparo M, Chiodo P, Ciarmela M, Minvielle M (2007) Oral treatment with a potential probiotic (Enterococcus faecalis CECT 7121) appears to reduce the parasite burden of mice infected with Toxocara canis. Ann Trop Med Parasitol 101(6):559–562.  https://doi.org/10.1179/136485907X193824 CrossRefPubMedGoogle Scholar
  6. Bautista-Garfias CR, Ixta-Rodriguez O, Martinez-Gómez F, López MG, Aguilar-Figueroa BR (2001) Effect of viable or dead Lactobacillus casei organisms administered orally to mice on resistance against Trichinella spiralis infection. Parasite 8(2 Suppl):226–228.  https://doi.org/10.1051/parasite/200108s2226 CrossRefGoogle Scholar
  7. Bautista-Garfias CR, Gomez MB, Aguilar-Figueroa BR, Ixta-Rodriguez O, Martinez-Gómez F, Mosqueda J (2005) The treatment of mice with Lactobacillus casei induces protection against Babesia microti infection. Parasitol Res 97(6):472–477.  https://doi.org/10.1007/s00436-005-1475-7 CrossRefPubMedGoogle Scholar
  8. Bautista-Garfias CR, Alvarez MCT, Martinez-Gómez FM (2008) The inoculation of Lactobacillus casei in NIH mice induces a protective response against Trypanosoma cruzi (Ninoa strain) infection. Vet Mex 39:139–144Google Scholar
  9. Beaver PC (1969) The nature of visceral larva migrans. J Parasitol 55(1):3–12CrossRefPubMedGoogle Scholar
  10. CDC Division of Parasitic Diseases, National Center for infectious Diseases Center for Disease Control and Prevention (2017). IOP Publishing PhysicsWeb. http://www.cdc.gov/parasites/toxocariasis/. Accessed 27 February 2017
  11. Chiodo PG, Sparo MD, Pezzani BC, Minvielle MC, Basualdo JA (2010) In vitro and in vivo effects of Enterococcus faecalis CECT7121 on Toxocara canis. Mem Inst Oswaldo Cruz 105(5):615–620.  https://doi.org/10.1590/S0074-02762010000500003 CrossRefPubMedGoogle Scholar
  12. Colli M, Rubinsky-Elefant G, Paludo ML, Falavigna DLM, Guilherme EV, Mattia S, Araujo SM, Ferreira EC, Previdelli ITS, Falavigna-Guilherme AL (2010) Serological, clinical and epidemiological evaluation of toxocariasis in urban areas of South Brazil. Rev Inst Med Trop São Paulo 52(2):69–74.  https://doi.org/10.1590/S0036-46652010000200002 CrossRefPubMedGoogle Scholar
  13. Despommier D (2003) Toxocariasis: clinical aspects, epidemiology, medical ecology and molecular aspects. Clin Microbiol Rev 16(2):265–272.  https://doi.org/10.1128/CMR.16.2.265-272.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dvorožňáková E, Bucková B, Hurníková Z, Revajová V, Lauková A (2016) Effect of probiotic bacteria on phagocytosis and respiratory burst activity of blood polymorphonuclear leukocytes (PMNL) in mice infected with Trichinella spiralis. Vet Parasitol 231:69–76.  https://doi.org/10.1016/j.vetpar.2016.07.004 CrossRefPubMedGoogle Scholar
  15. FAO/WHO, World Health Organization (2001) Joint FAO/WHO consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. IOP Publishing PhysicsWeb ftp://ftp.fao.org/docrep/fao/009/a0512e/a0512e00.pdf. Accessed 10 February, 2017
  16. Hardy H, Harris J, Lyon E, Beal J, Foey AD (2013) Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Nutrients 6(6):1869–1912.  https://doi.org/10.3390/nu5061869 CrossRefGoogle Scholar
  17. Hemarajata P, Versalovic J (2013) Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therap Adv Gastroenterol 6(1):39–51.  https://doi.org/10.1177/1756283X12459294 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hotez PJ, Wilkins PP (2009) Toxocariasis: America’s most common neglected infection of poverty and a helminthiasis of global importance? PLoS Negl Trop Dis 3(3):400.  https://doi.org/10.1371/journal.pntd.0000400 CrossRefGoogle Scholar
  19. Jorjão AL, Oliveira FE, Leão MVP, Carvalho CAT, Jorge AOC, Oliveira LD (2015) Live and Heat-Killed Lactobacillus rhamnosus ATCC 7469 may induce modulatory cytokines profiles on macrophages RAW 264.7. Sci World J 716–749. doi:  https://doi.org/10.1155/2015/716749
  20. Lauková A, Strompfová V, Ouwehand A (2004) Adhesion properties of enterococci to intestinal mucus of different hosts. Vet Res Commun 28(8):647–655.  https://doi.org/10.1023/B:VERC.0000045948.04027.a7 CrossRefPubMedGoogle Scholar
  21. Leão MV, Silva CR, Santos SS, Leite PG (2016) Lactobacillus rhamnosus pode alterar a virulência de Candida albicans. Rev Bras Ginecol Obstet 37(9):417–420.  https://doi.org/10.1590/SO100-720320150005217 CrossRefGoogle Scholar
  22. Macpherson CNL (2013) The epidemiology and public health importance of toxocariasis: a zoonosis of global importance. Int J Parasitol 43(12-13):999–1008.  https://doi.org/10.1016/j.ijpara.2013.07.004 CrossRefPubMedGoogle Scholar
  23. Magnaval JF, Glickman LT, Dorchies P, Morassin B (2001) Highlights of human toxocariasis. Korean J Parasitol 39(1):1–11.  https://doi.org/10.3347/kjp.2001.39.1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Maizels RM, Blaxter ML, Robertson BD, Selkirk ME (1992) Parasite antigens, parasite genes. A laboratory manual for molecular parasitology. Cambridge University Press 70:373–374.  https://doi.org/10.1016/0092-8674(92)90160-E
  25. Marchioro AA, Colli CM, Mattia S, Paludo ML, Melo GC, Adami CM, Pelloso SM, Falavigna-Guilherme AL (2011) Avaliação eosinofílica e soropositividade para anticorpos IgG anti-Toxocara em crianças atendidas pelo Sistema Único de Saúde. Rev Paul Pediatr 29(1):80–84.  https://doi.org/10.1590/S0103-05822011000100013 CrossRefGoogle Scholar
  26. Martínez-Gómez F, Rodríguez OI, Figueroa BA, Cruz RH, Ostria AM (2006) Lactobacillus casei ssp. rhamnosus enhances non specific protection against Plasmodium chabaudi AS in mice. Salud Publica Mex 48(6):498–503.  https://doi.org/10.1590/S0036-36342006000600008 CrossRefPubMedGoogle Scholar
  27. Martínez-Gómez F, García-González LF, Mondragón-Flores R, Bautista-Garfias CR (2009) Protection against Toxoplasma gondii brain cyst formation in mice immunized with Toxoplasma gondii cytoskeleton proteins and Lactobacillus casei as adjuvant. Vet Parasitol 160(3-4):311–315.  https://doi.org/10.1016/j.vetpar.2008.11.017 CrossRefPubMedGoogle Scholar
  28. Martínez-Gómez F, Castro BEF, Garfias CRB (2011) The intraperitoneal inoculation of Lactobacillus casei in mice induces total protection against Trichinella spiralis infection at low challenge doses. Parasitol Res 109(6):1609–1617.  https://doi.org/10.1007/s00436-011-2432-2 CrossRefPubMedGoogle Scholar
  29. Mattia S, Colli CM, Adami CM, Guilherme GF, Nishi L, Rubinsky-Elefant G, Marchioro AA, Gomes ML, Falavigna-Guilherme AL (2011) Seroprevalence of Toxocara infection in children and environmental contamination of urban areas in Paraná State, Brazil. J Helminthol 86(04):440–445.  https://doi.org/10.1017/S0022149X11000666 CrossRefPubMedGoogle Scholar
  30. Mejia AB, Olave CA, Betancourt LSC, Mondolfi AP, Delgado O, Moralez AJR (2014) Toxocariasis in the Americas: burden and disease control. Curr Trop Med Rep 1(1):62–68.  https://doi.org/10.1007/s40475-013-0010-7 CrossRefGoogle Scholar
  31. Mendonça LR, Veiga RV, Dattoli VC, Figueiredo CA, Fiaccone RL, Santos J, Cruz AA, Rodrigues LC, Cooper PJ, Pontes-de-Carvalho L, Barreto ML, Alcantara-Neves NM (2012) Toxocara seropositivity, atopy and wheezing in children living in poor neighbourhoods in urban Latin American. PLoS Negl Trop Dis 6(11):866.  https://doi.org/10.1371/journal.pntd.0001886 CrossRefGoogle Scholar
  32. Mendonça LR, Figueiredo CA, Esquivel R, Fiaccone RL, Pontes-de-Carvalho L, Cooperg P, Barreto ML, Alcantara-Neves NM (2013) Seroprevalence and risk factors for Toxocara infection in children from an urban large setting in Northeast Brazil. Acta Trop 128(1):90–95.  https://doi.org/10.1016/j.actatropica.2013.06.018 CrossRefPubMedGoogle Scholar
  33. Pinelli E, Aranzamendi C (2012) Toxocara infection and its association with allergic manifestations. Endocr Metab Immune Disord Drug Targets 12(1):33–44.  https://doi.org/10.2174/187153012799278956 CrossRefPubMedGoogle Scholar
  34. Randazzo V, Costamagna SR (2005) Effect of oral administration of probiotic agents on Trichinella spiralis-infected mice. Rev Patol Trop 34:129–135Google Scholar
  35. Rolfe RD (2000) The role of probiotic cultures in the control of gastrointestinal health. J Nutr 130:396–402Google Scholar
  36. Savigny DH (1975) In vitro maintenance of Toxocara canis larvae and a simple method for the production of Toxocara ES antigens for use in serodiagnostic tests for visceral larva migrans. J Parasitol 61(4):781–782.  https://doi.org/10.2307/3279492 CrossRefPubMedGoogle Scholar
  37. Schoenardie ER, Scaini CJ, Brod CS, Pepe MS, Villela MM, Mcbride AJA, Borsuk S, Berne MEA (2013) Seroprevalence of Toxocara infection in children from Southern Brazil. J Parasitol 99(3):537–539.  https://doi.org/10.1645/GE-3182 CrossRefPubMedGoogle Scholar
  38. Schrezenmeir J, Vrese M (2001) Probiotics, prebiotics, and synbiotics—approaching a definition. Am J Clin Nutr 73:361–364Google Scholar
  39. Shida K, Kiyoshima-Shibata J, Nagaoka M, Watanabe K, Nanno KM (2006) Induction of interleukin-12 by Lactobacillus strains having a rigid cell wall resistant to intracellular digestion. J Dairy Sci 89(9):3306–3317.  https://doi.org/10.3168/jds.S0022-0302(06)72367-0 CrossRefPubMedGoogle Scholar
  40. Smith H, Holland C, Taylor M, Magnaval JF, Schantz P, Maizels R (2009) How common is human toxocariasis? Towards standardizing our knowledge. Trends Parasitol 25(4):182–188.  https://doi.org/10.1016/j.pt.2009.01.006 CrossRefPubMedGoogle Scholar
  41. Soccol CR, Vandenberghe LPS, Spier MR, Medeiros ABP, Yamaguishi CT, Lindner JD, Pandey A, Soccol VT (2010) The potential of probiotics: a review. Food Technol Biotechnol 48:413–434Google Scholar
  42. Souza RF, Dattoli VCC, Mendonça LR, Jesus JR, Baqueiro T, Santana CC, Santos NM, Barrouin-Melo SM, Alcantara-Neves NM (2011) Prevalência e fatores de risco da infecção humana por Toxocara canis em Salvador, Estado da Bahia. Rev Soc Bra Med Trop 44:516–519CrossRefGoogle Scholar
  43. Taira K, Permin A, Kapel CMO (2003) Establishment and migration pattern of Toxocara canis larvae in chickens. Parasitol Res 90(6):521–523.  https://doi.org/10.1007/s00436-003-0894-6 CrossRefPubMedGoogle Scholar
  44. Taverniti V, Guglielmetti S (2011) The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr 6(3):261–274.  https://doi.org/10.1007/s12263-011-0218-x CrossRefPubMedPubMedCentralGoogle Scholar
  45. Travers MA, Florent I, Kohl L, Grellier P (2011) Probiotics for the control of parasites: an overview. J Parasitol Res 610769:1–11.  https://doi.org/10.1155/2011/610769 CrossRefGoogle Scholar
  46. Xi WG, Jin LZ (1998) A novel method for the recovery of Toxocara canis in mice. J Helminthol 72(02):183–184.  https://doi.org/10.1017/S0022149X00016382 CrossRefPubMedGoogle Scholar
  47. Yan F, Polk DB (2011) Probiotics and immune health. Curr Opin Gastroenterol 27(6):496–501.  https://doi.org/10.1097/MOG.0b013e32834baa4d CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Débora Liliane Walcher
    • 1
    • 2
  • Luis Augusto Xavier Cruz
    • 3
  • Paula de Lima Telmo
    • 4
  • Lourdes Helena Rodrigues Martins
    • 4
  • Luciana Farias da Costa de Avila
    • 3
  • Maria Elisabeth Aires Berne
    • 1
  • Carlos James Scaini
    • 3
  1. 1.Post-Graduate Program in Parasitology, Department of Microbiology and ParasitologyUniversidade Federal de Pelotas (UFPel)PelotasBrazil
  2. 2.Laboratory Parasitology - Universidade Federal do Rio GrandeRio GrandeBrazil
  3. 3.Post-Graduate Program in Health Sciences – Parasitology LaboratoryUniversidade Federal do Rio Grande (FURG), Academic Area of the University Hospital – FURGRio GrandeBrazil
  4. 4.Parasitology LaboratoryUniversidade Federal do Rio Grande (FURG), Academic Area of the University Hospital – FURGRio GrandeBrazil

Personalised recommendations