Parasitology Research

, Volume 117, Issue 2, pp 377–389 | Cite as

Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall.bark extract and their larvicidal activity against dengue and filariasis vectors

  • Dinesh Kumar
  • Gaurav Kumar
  • Veena AgrawalEmail author
Original Paper


The present study was carried out to evaluate the larvicidal potential of methanol, hexane, acetone, chloroform, and aqueous bark extracts of Holarrhena antidysenterica (L.) Wall. and silver nanoparticles (AgNPs) synthesized using aqueous bark extract against the third instar larvae of Aedes aegypti L. and Culex quinquefasciatus Say. AgNPs were prepared by adding 10 ml of aqueous bark extract in 90 ml of 1 mM silver nitrate (AgNO3) solution. After 5 min of mixing, a change in color from yellow to dark brown occurred indicating the synthesis of AgNPs. Their further characterization was done through ultraviolet-visible spectroscopy (UV–Vis), X-ray diffraction analysis (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). UV–Vis spectrum of synthesized AgNPs showed a maximum absorption peak at 420 nm wavelength. Crystalline nature of AgNPs was confirmed by the presence of characteristic Bragg reflection peaks in XRD pattern. TEM images have shown that most of the AgNPs were spherical in shape with an average size of 32 nm. FT-IR spectrum of AgNPs showed prominent absorbance peaks at 1012.2 (C–O) and 3439.44 cm−1 (O–H) which represent the major constituents of phenolics, terpenoids, and flavonoids compounds. LC-MS analysis of the bark extract confirmed the presence of carbonyl and hydroxyl functional groups which were directly correlated with FT-IR results. These AgNPs were assayed against different mosquito vectors, and the maximum mortality was recorded against the larvae of A. aegypti with LC50 and LC90 values being 5.53 and 12.01 ppm, respectively. For C. quinquefasciatus, LC50 and LC90 values were 9.3 and 19.24 ppm, respectively, after 72 h of exposure. Bark extracts prepared in different solvents such as methanol, chloroform, hexane, acetone, and water showed moderate larvicidal activity against A. aegypti their respective LC50 values being 71.74, 94.25, 102.25, 618.82, and 353.65 ppm and LC90 values being 217.36, 222.24, 277.82, 1056.36, and 609.37 ppm. For C. quinquefasciatus, their LC50 values were 69.43, 112.39, 73.73, 597.74, and 334.75 ppm and LC90 values of 170.58, 299.76, 227.48, 1576.98, and 861.45 ppm, respectively, after 72 h of treatment. AgNPs proved to be nontoxic against the non-target aquatic organism, Mesocyclops thermocyclopoides Harada when exposed for 24, 48, and 72 h. The results showed that bark extract-derived AgNPs have extremely high larvicidal potential compared to other organic solvents as well as aqueous bark extract alone. These AgNPs, therefore, can be used safely for the control of dengue and filarial vectors that cause severe human health hazards.


Aedes aegypti L. Culex quinquefasciatus Say Bark extract Holarrhena antidysenterica (L.) Wall. Silver nanoparticles Larvicidal activity 



Authors are grateful to the University of Delhi for providing Research and Development and DSTPURSE grants. Dinesh Kumar is indebted to University Grants Commission, New Delhi for the award of JRF.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28(4):313–318. CrossRefGoogle Scholar
  2. Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against Aedes, Anopheles and Culex larvae (Diptera: Culicidae). Parasitol Res 99(4):466–472. CrossRefPubMedGoogle Scholar
  3. Aromal AS, Philip D (2012) Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim Acta A Mol Biomol Spectrosc 97:1–5. CrossRefGoogle Scholar
  4. Azarudeen RMST, Govindarajan M, AlShebly MM, AlQahtani FS, Amsath A, Senthilmurugan S, Vijayan P, Benelli G (2017) Size-controlled biofabrication of silver nanoparticles using the Merremia emarginata leaf extract: toxicity on Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) and non-target mosquito predators. J Asia Pac Entomol 20(2):359–366. CrossRefGoogle Scholar
  5. Azarudeen RMST, Govindarajan M, Amsath A, Kadaikunnan S, Alharbi NS, Vijayan P, Muthukumaran U, Benelli G (2016) Size-controlled fabrication of silver nanoparticles using the Hedyotis puberula leaf extract: toxicity on mosquito vectors and impact on biological control agents. RSC Adv 6(99):96573–96583. CrossRefGoogle Scholar
  6. Ballottin D, Fulaz S, Souza ML, Corio P, Rodrigues AG, Souza AO, Gaspari PM, Gomes AF, Gozzo F, Tasic L (2016) Elucidating protein involvement in the stabilization of the biogenic silver nanoparticles. Nanoscale Res Lett 11(1):313–322. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115(1):23–34. CrossRefPubMedGoogle Scholar
  8. Benelli G (2016b) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer – a brief review. Enzym Microb Technol 95:58–68. CrossRefGoogle Scholar
  9. Benelli G (2018) Gold nanoparticles–against parasites and insect vectors. Acta Trop 178:73–80. CrossRefPubMedGoogle Scholar
  10. Benelli G, Beier JC (2017) Current vector control challenges in the fight against malaria. Acta Trop 174:91–96. CrossRefPubMedGoogle Scholar
  11. Benelli G, Govindarajan M (2017) Green-synthesized mosquito oviposition attractants and ovicides: towards a nanoparticle-based "lure and kill" approach? J Clust Sci 28(1):287–308. CrossRefGoogle Scholar
  12. Benelli G, Mehlhorn H (2016) Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115(5):1747–1754. CrossRefPubMedGoogle Scholar
  13. Benelli G, Pavela R, Maggi F, Petrelli R, Nicoletti M (2017) Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J Clust Sci 28(1):3–10. CrossRefGoogle Scholar
  14. Chandramohan B, Murugan K, Panneerselvam C, Madhiyazhagan P, Chandirasekar R, Dinesh D, Kumar PM, Kovendan K, Suresh U, Subramaniam J, Rajaganesh R (2016) Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles: genotoxicity and impact on predation efficiency of mosquito natural enemies. Parasitol  Res 115:1015–1025Google Scholar
  15. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22(2):577–583. CrossRefPubMedGoogle Scholar
  16. Chung M, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G (2016) Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett 11(1):40–54. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114(4):1519–1529. CrossRefPubMedGoogle Scholar
  18. Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44(16):5778–5792. CrossRefPubMedGoogle Scholar
  19. Elumalai D, Kaleena PK, Ashok K, Suresh A, Hemavathi M (2016) Green synthesis of silver nanoparticle using Achyranthes aspera and its larvicidal activity against three major mosquito vectors. Engineering in Agriculture, Environment and Food 9:1–8Google Scholar
  20. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–666.<662::AID-JBM10>3.0.CO;2-3 CrossRefPubMedGoogle Scholar
  21. Finney DJ (1971) Probit Analysis. Cambridge University Press, London, pp 68–72Google Scholar
  22. Firoozi S, Jamzad M, Yari M (2016) Biologically synthesized silver nanoparticles by aqueous extract of Satureja intermedia CA Mey and the evaluation of total phenolic and flavonoid contents and antioxidant activity. Journal of nanostructure inChemistry 6:357–364CrossRefGoogle Scholar
  23. Foldbjerg R, Jiang X, Miclăus T, Chunying C, Autrup H, Beer C (2015) Silver nanoparticles-wolves in sheep’s clothing? Toxicol Res 4(3):563–575. CrossRefGoogle Scholar
  24. Govindarajan M, Benelli G (2016) One-pot green synthesis of silver nanocrystals using Hymenodictyon orixense: a cheap and effective tool against malaria, chikungunya and Japanese encephalitis mosquito vectors? RSC Adv 6(64):59021–59029. CrossRefGoogle Scholar
  25. Govindarajan M, Benelli G (2017) A facile one-pot synthesis of eco- friendly nanoparticles using Carissa carandas: ovicidal and larvicidal potential on malaria, dengue and filariasis mosquito vectors. J Clust Sci 28(1):15–36. CrossRefGoogle Scholar
  26. Govindarajan M, Rajeswary M, Veerakumar K, Hoti SL, Mehlhorn H, Barnard DR, Benelli G (2016) Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control. Parasitol Res 115(2):723–733. CrossRefPubMedGoogle Scholar
  27. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):105104. CrossRefGoogle Scholar
  28. Jinu U, Rajakumaran S, Senthil-Nathan S, Geetha N, Venkatachalam P (2017) Potential larvicidal activity of silver nanohybrids synthesized using leaf extracts of Cleistanthus collinus (Roxb.) Benth. Ex Hook. f. And Strychnos nuxvomica L. nuxvomica against dengue, chikungunya and Zika vectors. Physiol Mol Plant Pathol 0:1–9Google Scholar
  29. Kalimuthu K, Panneerselvam C, Chou C, Lin SM, Tseng LC, Tsai KH, Murugan K, Hwang JS (2017a) Predatory efficiency of the copepod Megacyclops formosanus and toxic effect of the red alga Gracilaria firma-Synthesized Silver nanoparticles against the dengue vector Aedes aegypti. Hydrobiologia 785(1):359–372. CrossRefGoogle Scholar
  30. Kalimuthu K, Panneerselvam C, Chou C, Tseng LC, Murugan K, Tsai KH, Alarfaj AA, Higuchi A, Canale A, Hwang JS, Benelli G (2017b) Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-Synthesized Silver nanoparticles and related histological changes in targeted mosquitoes. Process Saf Environ Prot 109:82–96. CrossRefGoogle Scholar
  31. Kalimuthu K, Panneerselvam C, Murugan K, Hwang JS (2013) Green synthesis of silver nanoparticles using Cadaba indica lam leaf extract and its larvicidal and pupicidal activity against Anopheles stephensi and Culex quinquefasciatus. J Entomol Acarol Res 45(2):11. CrossRefGoogle Scholar
  32. Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G (2009) Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res 104(5):1163–1171. CrossRefPubMedGoogle Scholar
  33. Khan A, Bashir S, Gilani AH (2012a) An In vivo study on the diuretic activity ofHolarrhena antidysenterica. Afr J Pharm Pharmacol 6:454–458Google Scholar
  34. Khan A, Khan SR, Gilani AH (2012b) Studies on the in vitro and in vivo antiurolithic activity of Holarrhena antidysentery. Urol Res 40(6):671–681. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kong H, Jang J (2006) One-step fabrication of silver nanoparticle embedded polymer nanofibers by radical-mediated dispersion polymerization. Chem Commun 28:3010–3012CrossRefGoogle Scholar
  36. Kumar VA, Ammani K, Jobina R, Subhaswaraj P, Siddhardha B (2017) Photo-induced and phytomediated synthesis of silver nanoparticles using Derris trifoliata leaf extract and its larvicidal activity against Aedes aegypti. J Photochem Photobiol B 171:1–8. CrossRefPubMedGoogle Scholar
  37. LeeJH, VelmuruganP, ParkJH, MuruganK, LovanhN, ParkYJ, OhBT, VenkatachalamP, BenelliG (2017) A novel photo-biological engineering method for Salvia miltiorrhiza-mediated fabrication of silver nanoparticles using LED lights sources and its effectiveness against Aedes aegyptiMosquito larvae and microbial pathogens.Physiol Mol plant Pathol xx:1–9
  38. Lukman AI, Gong B, Marjo CE, Roessner U, Harris AT (2011) Facile synthesis, stabilization, and anti-bacterial performance of discrete ag nanoparticles using Medicago sativa seed exudates. J Colloid Interface Sci 353(2):433–444. CrossRefPubMedGoogle Scholar
  39. Madhiyazhagan P, Murugan K, Naresh Kumar A, Nataraj T, Dinesh D, Panneerselvam C, Subramaniam J, Mahesh Kumar P, Suresh U, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Benelli G (2015) Sargassum muticum-Synthetized Silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol Res 114(11):4305–4317. CrossRefPubMedGoogle Scholar
  40. Mahendran G, Kumari BR (2016) Biological activities of silver nanoparticles from Nothapodytes nimmoniana (Graham) Mabb. Fruit extracts. Food Sci Human Wellness 5(4):207–218. CrossRefGoogle Scholar
  41. Mahesh Kumar P, Murugan K, Madhiyazhagan P, Kovendan K, Amerasan D, Chandramohan B, Dinesh D, Suresh U, Nicoletti M, Saleh Alsalhi M, Devanesan S, Wei H, Kalimuthu K, Hwang JS, Lo Iacono A, Benelli G (2016) Biosynthesis, characterization and acute toxicity of Berberis tinctoria-Fabricated Silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides. Parasitol Res 115(2):751–759. CrossRefGoogle Scholar
  42. Mahyoub JA, Aziz AT, Panneerselvam C, Murugan K, Roni M, Trivedi S, Nicoletti M, Hawas UW, Shaher FM, Bamakhrama MA, Canale A, Benelli G (2017) Sea grasses as sources of mosquito nano-larvicides? Toxicity and uptake of Halodule uninervis-Biofabricated Silver nanoparticles in dengue and Zika virus vector Aedes aegypti. J Clust Sci 28(1):565–580. CrossRefGoogle Scholar
  43. Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Kumar PM, Subramaniam J, Suresh U (2016) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114:2243–2253CrossRefGoogle Scholar
  44. Murugan K, Wei J, Saleh Alsalhi M, Nicoletti M, Paulpandi M, Samidoss CM, Dinesh D, Chandramohan B, Paneerselvam C, Subramaniam J, Vadivalagan C, Wei H, Amuthavalli P, Jaganathan A, Devanesan S, Higuchi A, Kumar S, Aziz AT, Nataraj D, Vaseeharan B, Canale A, Benelli G (2017) Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN- 2), and their mosquito vectors. Parasitol Res 116(2):495–502. CrossRefPubMedGoogle Scholar
  45. Nahar UJ, Bhuiyan MMR, Samsudduzah ANM, Uddin MR, Maryam Z (2012) Phytochemical screening, cytotoxic and CNS depressant activities of Holarrhena antidysentericaleaves and seeds. Int J Pharm Sci Res 6:620–623Google Scholar
  46. Noginov MA, Zhu G, Bahoura M, Adegoke J, Small C (2007) The effect of gain and absorption on surface plasmos in metal nanoparticles. Appl Phys B-Lasers O 86(3):455–460. CrossRefGoogle Scholar
  47. Pandey V, Agrawal V, Raghavendra K, Dash AP (2007) Strong larvicidal activity of three species of Spilanthes (Akarkara) against malaria (Anopheles stephensi Liston, Anopheles culicifacies, species C) and filaria vector (Culex quinquefasciatussay). Parasitol Res 102(1):171–174. CrossRefPubMedGoogle Scholar
  48. Pandey V, Chopra M, Agrawal V (2011) In vitro isolation and characterization of biolarvicidal compounds from micropropagated plants of Spilanthes acmella. Parasitol Res 108(2):297–304. CrossRefPubMedGoogle Scholar
  49. Panneerselvam C, Murugan K, Roni M, Suresh U, Rajaganesh R, Madhiyazhagan P, Subramaniam J, Dinesh D, Nicoletti M, Higuchi A, Alarfaj AA (2016) Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity? Parasitol Res 115(3):997–1013. CrossRefPubMedGoogle Scholar
  50. Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK (2012a) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and non-target fish Poecillia reticulate. Parasitol Res 111(2):555–562. CrossRefPubMedGoogle Scholar
  51. Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012b) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110(5):1815–1822. CrossRefPubMedGoogle Scholar
  52. Pavela R, Murugan K, Canale A, Benelli G (2017) Saponaria officinalis-Synthesized Silver nanocrystals as effective biopesticides and oviposition inhibitors against Tetranychus urticae Koch. Ind Crop Prod 97:338–344. CrossRefGoogle Scholar
  53. Petit C, Lixon P, Pileni MP (1993) In situ synthesis of silver nanocluster in AOT reverse micelles. J Phys Chem 97(49):12974–12983. CrossRefGoogle Scholar
  54. Rahuman AA, Bagavan A, Kamaraj C, Vadivelu M, Zahir AA, Elango G, Pandiyan G (2009) Evaluation of indigenous plant extracts against larvae of Culex quinquefasciatussay (Diptera: Culicidae). Parasitol Res 104(3):637–643. CrossRefPubMedGoogle Scholar
  55. Rajakumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118(3):196–203. CrossRefPubMedGoogle Scholar
  56. Raveen R, Kamakshi KT, Deepa M, Arivoli S, Tennyson S (2014) Larvicidal activity of Nerium oleanderL. (Apocynaceae) flower extracts against Culex quinquefasciatus Say (Diptera: Culicidae). Int J Mosq Res 1:38–42Google Scholar
  57. Rawani A (2017) Mosquito larvicidal activity of green silver nanoparticle synthesized from extract of bud of Polianthus tuberosa L. Int J Nanotechnol Appl 11:17–28Google Scholar
  58. Rawani A, Ghosh A, Chandra G (2013) Mosquitolarvicidalandantimicrobialactivityofsynthesizednanocrystallinesilverparticlesusingleaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop 128(3):613–622. CrossRefPubMedGoogle Scholar
  59. Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Dinesh D, Suresh U, Khater HF, Wei H, Canale A (2015) Characterization and biotoxicity of Hypnea musciformis-Synthesized Silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf 121:31–38. CrossRefPubMedGoogle Scholar
  60. Salam H, Rajiv A, Kamaraj P, Jagadeeswaran M, Sangeetha P, Gunalan Sivaraj R (2012) Plants: green route for nanoparticle synthesis. Int Res J Biol Sci 1:85–90Google Scholar
  61. Santhosh SB, Yuvarajan R, Natarajan D (2015) Annona muricata leaf extract-mediated silver nanoparticles synthesis and its larvicidal potential against dengue, malaria and filariasis vector. Parasitol Res 114(8):3087–3096. CrossRefPubMedGoogle Scholar
  62. Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702. CrossRefPubMedGoogle Scholar
  63. Shahabuddin KU, Sarwar MS, Mohiuddin EJAZ (2006) Clinical evaluation of some herbal medicine for amoebiasis. Pak. J Pharmacol Sci 23:9–12Google Scholar
  64. Shameli K, Ahmad MB, Jazayeri SD, Shabanzadeh P, Sangpour P, Jahangirian H, Yn G (2012) Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem Cent J 6:73CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sharma G, Kapoor H, Chopra M, Kumar K, Agrawal V (2014a) Strong larvicidal potential of Artemisia annua leaf extract against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti L.) vectors and bioassay-driven isolation of the marker compounds. Parasitol Res 113(1):197–209. CrossRefPubMedGoogle Scholar
  66. Sharma V, Hussain S, Bakshi M, Bhat N, Saxena AK (2014b) In vitro cytotoxic activity of leaves extracts of Holarrhena antidysenterica against some human cancer cell lines. Indian J Biochem Biophys 15:46–51Google Scholar
  67. Shwetha C, Latha KP, Asha KA (2014) Study on analgesic activity of Holarrhena antidysenterica leaves. J Herb Med 2:14–16Google Scholar
  68. Siddhardha B, Jobina R, Bibhuti R, Sukumar K (2014) Green rapid biogenic synthesis of bioactive silver nanoparticles (AgNPs) using Pseudomonas aeruginosa. IET Nanobiotechnol 8:267–274CrossRefGoogle Scholar
  69. Singh J, Kaur G, Kaur P, Bajaj R, Rawat M (2016) A review on green synthesis and characterization of silver nanoparticles and their applications: a green nanoworld. World J Pharm Pharm Sci 7:730–762Google Scholar
  70. Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatussay (Diptera: Culicidae). Parasitol Res 112(2):487–499. CrossRefPubMedGoogle Scholar
  71. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Dinesh D, Kumar PM, Chandramohan B, Suresh U, Rajaganesh R, Alsalhi MS (2016) Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ Sci Pollut Res 23(8):7543–7558. CrossRefGoogle Scholar
  72. Suganya G, Karthi S, Shivakumar MS (2014) Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti. Parasitol Res 113(3):875–880. CrossRefPubMedGoogle Scholar
  73. Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Nicoletti M, Higuchi A, Madhiyazhagan P, Subramaniam J, Dinesh D (2015) Green synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res 114(9):3315–3325. CrossRefPubMedGoogle Scholar
  74. Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114(4):1551–1562. CrossRefPubMedGoogle Scholar
  75. Tesfazghi K, Hill J, Jones C, Ranson H, Worrall E (2016) National malaria vector control policy: an analysis of the decision to scale-up larviciding in Nigeria. Health Policy Plan 31:9–101CrossRefGoogle Scholar
  76. Thakur P, Chawla R, Narula A, Goel R, Arora R, Sharma RK (2016) Anti-hemolytic, hemagglutination inhibition and bacterial membrane disruptive properties of selected herbal extracts attenuate virulence of Carbapenem resistant Escherichia coli. Microb Pathog 95:133–141. CrossRefPubMedGoogle Scholar
  77. Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014a) Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 113(5):1775–1785. CrossRefPubMedGoogle Scholar
  78. Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014b) Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 113(6):2363–2373. CrossRefPubMedGoogle Scholar
  79. WHO (1988) Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. WHO/VBC/81.807, GenevaGoogle Scholar
  80. WHO (2004) Global Strategic Framework for Integrated Vector Management. World Health Organization (In WHO/CDS/CPE/PVC/2004), pp 12Google Scholar
  81. Yadav A, Rai M (2011) Bioreduction and mechanistic aspects involved in the synthesis of silver nanoparticles using Holarrhena antidysenterica. J Bionanoscience 5(1):70–73.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of BotanyUniversity of DelhiDelhiIndia
  2. 2.National Institute of Malaria ResearchNew DelhiIndia

Personalised recommendations