Advertisement

Parasitology Research

, Volume 117, Issue 1, pp 157–167 | Cite as

New insights from molecular phylogenetics of amoebophagous fungi (Zoopagomycota, Zoopagales)

  • Daniele Corsaro
  • Martina Köhsler
  • Claudia Wylezich
  • Danielle Venditti
  • Julia Walochnik
  • Rolf Michel
Original Paper

Abstract

Amoebophagous fungi are represented in all fungal groups: Basidiomycota, Ascomycota, Zygomycota, and Chytridiomycota. The amoebophagous fungi, within the zygomycota (Zoopagales, Zoopagomycota), mainly affect naked amoebae as ectoparasites or endoparasites. It is rather difficult to isolate members of the Zoopagales, because of their parasitic lifestyle, and to bring them into culture. Consequently, gene sequences of this group are undersampled, and its species composition and phylogeny are relatively unknown. In the present study, we were able to isolate amoebophagous fungi together with their amoeba hosts from various habitats (moss, pond, bark, and soil). Altogether, four fungal strains belonging to the genera Acaulopage and Stylopage plus one unidentified isolate were detected. Sequences of the 18S rDNA and the complete ITS region and partial 28S (LSU) rDNA were generated. Subsequent phylogenetic analyses showed that all new isolates diverge at one branch together with two environmental clonal sequences within the Zoopagomycota. Here, we provide the first molecular characterization of the genus Stylopage. Stylopage is closely related to the genus Acaulopage. In addition, taxonomy and phylogeny of amoebophagous fungi and their ecological importance are reviewed based on new sequence data, which includes environmental clonal sequences.

Keywords

Free-living amoebae Amoebophagous fungi Acaulopage Stylopage Zoopagales Zygomycetes 

Notes

Acknowledgements

We would like to thank Iveta Häfeli and Susi Glöckl from the Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, for excellent technical assistance.

References

  1. Barron GL (1983) A new Amoebophilus (Zygomycetes) ectoparasitic on amoebae. Can J Bot 61(12):3091–3094.  https://doi.org/10.1139/b83-347 CrossRefGoogle Scholar
  2. Benny GL, Smith ME, Kirk PM, Tretter ED, White MM (2016) Challenges and future perspectives in the systematics of Kickxellomycotina, Mortierellomycotina, Mucoromycotina, and Zoopagomycotina. In: Li D-W (ed) Biology of Microfungi, chap. 5. Springer International Publishing, Switzerland, pp 65–126CrossRefGoogle Scholar
  3. Bidochka MJ, Clark DC, Lewis MW, Keyhani NO (2010) Could insect phagocytic avoidance by entomogenous fungi have evolved via selection against soil amoeboid predators? Microbiology 156(7):2164–2171.  https://doi.org/10.1099/mic.0.038216-0 CrossRefPubMedGoogle Scholar
  4. Braga FR, Araújo JV (2014) Nematophagous fungi for biological control of gastrointestinal nematodes in domestic animals. Appl Microbiol Biotechnol 98(1):71–82.  https://doi.org/10.1007/s00253-013-5366-z CrossRefPubMedGoogle Scholar
  5. Corsaro D, Walochnik J, Venditti D, Steinmann J, Müller K-D, Michel R (2014a) Microsporidia-like parasites of amoebae belong to the early fungal lineage Rozellomycota. Parasitol Res 113(5):1909–1918.  https://doi.org/10.1007/s00436-014-3838-4 CrossRefPubMedGoogle Scholar
  6. Corsaro D, Walochnik J, Venditti D, Müller K-D, Hauröder B, Michel R (2014b) Rediscovery of Nucleophaga amoebae, a novel member of the Rozellomycota. Parasitol Res 113(12):4491–4498.  https://doi.org/10.1007/s00436-014-4138-8 CrossRefPubMedGoogle Scholar
  7. Corsaro D, Walochnik J, Köhsler M, Rott MB (2015) Acanthamoeba misidentification and multiple labels: redefining genotypes T16, T19 and T20, and proposal for Acanthamoeba micheli sp. nov. (genotype T19). Parasitol Res 114(7):2481–2490.  https://doi.org/10.1007/s00436-015-4445-8 CrossRefPubMedGoogle Scholar
  8. Corsaro D, Michel R, Walochnik J, Venditti D, Müller K-D, Hauröder B, Wylezich C (2016) Molecular identification of Nucleophaga terricolae sp. nov. (Rozellomycota), and new insights on the origin of the Microsporidia. Parasitol Res 115(8):3003–3011.  https://doi.org/10.1007/s00436-016-5055-9 CrossRefPubMedGoogle Scholar
  9. Dangeard P-A (1895) Mémoire sur les parasites du noyau et du protoplasme. Le Botaniste 4:199–248Google Scholar
  10. Dangeard P-A (1910) Études sur le développement et la structure des organismes inférieurs. I. Les amibes. Le Botaniste 11:4–57Google Scholar
  11. Dayal R (1973) Key to Phycomcycetes predaceous or parasitic in nematodes or amoebae I. Zoopagales. Sydowia 27:293–301Google Scholar
  12. Drechsler C (1934) Pedilospora dactylopaga n. sp., a fungus capturing and consuming testaceous rhizopods. J Wash Acad Sci 24:395–402Google Scholar
  13. Drechsler C (1935) Some non-catenulate conidial Phycomycetes preying on terricolous amoebae. Mycologia 27(2):176–205.  https://doi.org/10.2307/3754052 CrossRefGoogle Scholar
  14. Drechsler C (1937) A species of Tridentaria preying on Difflugia constricta. J Wash Acad Sci 27:391–398Google Scholar
  15. Drechsler C (1941) Predaceous fungi. Biol Rev 16(4):265–290.  https://doi.org/10.1111/j.1469-185X.1941.tb01104.x CrossRefGoogle Scholar
  16. Drechsler C (1942) New species of Acaulopage and Cochlonema destructive to soil amoebae. Mycologia 34(3):274–297.  https://doi.org/10.2307/3754641 CrossRefGoogle Scholar
  17. Drechsler C (1960) A clamp-bearing fungus using stalked adhesive young chlamydospores in capturing amoebae. Sydowia 14:246–257Google Scholar
  18. Drechsler C (1961) Some clampless hyphomycetes predacious on nematodes and rhizopods. Sydowia 15:9–25Google Scholar
  19. Drechsler C (1964) A Tridentaria subsisting on testaceous rhizopods and Pythium oospores. Sydowia 18:359–363Google Scholar
  20. Drechsler C (1969) A Tulasnella parasitic on Amoeba terricola. Am J Bot 56(10):1217–1220.  https://doi.org/10.2307/2440785 CrossRefGoogle Scholar
  21. Duddington CL (1956) The predaceous fungi: Zoopagales and Moniliales. Biol Rev 31(2):152–193.  https://doi.org/10.1111/j.1469-185X.1956.tb00651.x CrossRefGoogle Scholar
  22. Duddington CL (1973) Zoopagales. In: Ainsworth GC, Sparrow FK, Sussman AS (eds) The Fungi, vol 4B. Academic Press, New York, pp 231–234Google Scholar
  23. Engel AS (2010) Microbial diversity of cave ecosystems. In: Barton LL, Mandl M, Loy A (eds) Geomicrobiology: Molecular and Environmental Perspective. Springer Science+Business Media B.V., the Netherlands, pp 219–238.  https://doi.org/10.1007/978-90-481-9204-5_10
  24. Geisen S, Tveit AT, Clark IM, Richter A, Svenning MM, Bonkowski M, Urich T (2015) Metatranscriptomic census of active protists in soils. ISME J 9(10):2178–2190.  https://doi.org/10.1038/ismej.2015.30 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Geisen S, Koller R, Hünninghaus M, Dumack K, Urich T, Bonkowski M (2016) The soil food web revisited: diverse and widespread mycophagous soil protists. Soil Biol Biochem 94:10–18.  https://doi.org/10.1016/j.soilbio.2015.11.010 CrossRefGoogle Scholar
  26. Hillmann F, Novohradská S, Mattern DJ, Forberger T, Heinekamp T, Westermann M, Winckler T, Brakhage AA (2015) Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation. Environ Microbiol 15:2858–2869CrossRefGoogle Scholar
  27. James TY, Pelin A, Bonem L, Ahrendt S, Sain S, Corradi N, Stajich JE (2013) Shared signatures of parasitism and phylogenomics unite Cryptomycota and Microsporidia. Curr Biol 23(16):1548–1553.  https://doi.org/10.1016/j.cub.2013.06.057 CrossRefPubMedGoogle Scholar
  28. Jiang X, Xiang M, Liu X (2017) Nematode-trapping fungi. Microbiol. Spectrum 5(1):FUNK-0022–FUNK-2016.  https://doi.org/10.1128/microbiolspec.FUNK-0022-2016 Google Scholar
  29. Karling JS (1946) Brazilian Chytrids. IX. Species of Rhizophydium. Am J Bot 33(5):328–334.  https://doi.org/10.2307/2437119 CrossRefGoogle Scholar
  30. Köhsler M, Michel R, Wylezich C, Lugauer J, Walochnik J (2007) Molecular identification and classification of Cochlonema euryblastum, a zoopagalean parasite of Thecamoeba quadrilineata. Mycologia 99(2):215–221.  https://doi.org/10.1080/15572536.2007.11832580 CrossRefGoogle Scholar
  31. Korotneff A (1879) Études sur les Rhizopodes. Arch Zool Exp. G E N 8:467–482Google Scholar
  32. Leidy J (1879) Fresh-water rhizopods of North America. US Geol Surv Terr Rep 12:1–324Google Scholar
  33. Li J, Zou C, Xu J, Ji X, Niu X, Yang J, Huang X, Zhang K-Q (2015) Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Annu Rev Phytopathol 53(1):67–95.  https://doi.org/10.1146/annurev-phyto-080614-120336 CrossRefPubMedGoogle Scholar
  34. Liu Y, Steenkamp ET, Brinkmann H, Forget L, Philippe H, Lang BF (2009) Phylogenomic analyses predict sistergroup relationship of nucleariids and fungi and paraphyly of zygomycetes with significant support. BMC Evol Biol 9(1):272.  https://doi.org/10.1186/1471-2148-9-272 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Maisonneuve E, Cateau E, Kaaki S, Rodier MH (2016) Vermamoeba vermiformis-Aspergillus fumigatus relationships and comparison with other phagocytic cells. Parasitol Res 115(11):4097–4105.  https://doi.org/10.1007/s00436-016-5182-3 CrossRefPubMedGoogle Scholar
  36. Michel R, Wylezich C (2005) Beitrag zur Biologie und Morphologie von Cochlonema euryblastum, einem endoparasitischen Pilz von Thecamoeba quadrilineata. Mikrokosmos 94:75–79Google Scholar
  37. Michel R, Schmid EN, Böker T, Hager DG, Müller K-D, Hoffmann R, Seitz HM (2000) Vannella sp. harboring Microsporidia-like organisms isolated from the contact lens and inflamed eye of a female keratitis patient. Parasitol Res 86(6):514–520.  https://doi.org/10.1007/s004360050704 CrossRefPubMedGoogle Scholar
  38. Michel R, Hauröder B, Zöller L (2009a) Isolation of the amoeba Thecamoeba quadrilineata harbouring intranuclear spore forming endoparasites considered as fungus-like organisms. Acta Protozool 48:41–49Google Scholar
  39. Michel R, Müller K-D, Hauröder B (2009b) A novel microsporidian endoparasite replicating within the nucleus of Saccamoeba limax isolated from a pond. Endocytobios. Cell Res 19:120–126Google Scholar
  40. Michel R, Müller K-D, Schmid EN, Theegarten D, Hauröder B, Corsaro D (2012) Isolation of Thecamoeba terricola from bark of Platanus occidentalis harbouring spore-forming eukaryotic endoparasites with intranuclear development. Endocytobios. Cell Res 22:37–42Google Scholar
  41. Michel R, Walochnik J, Scheid P (2014) Isolation and characterisation of various amoebophagous fungi and evaluation of their prey spectrum. Exp Parasitol 145:131–136CrossRefGoogle Scholar
  42. Michel R, Scheid P, Köhsler M, Walochnik J (2015) Acaulopage tetraceros DRECHSLER 1935 (Zoopagales): cultivation, prey pattern and molecular characterization. Endocytobios. Cell Res 26:76–82Google Scholar
  43. Mitchell EAD, Charman DJ, Warner BG (2008) Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodivers Conserv 17(9):2115–2137.  https://doi.org/10.1007/s10531-007-9221-3 CrossRefGoogle Scholar
  44. Mrva M (2008) Infection of Mayorella penardi (Gymnamoebia) in oak-hornbeam forest soil by the ectoparasitic fungus Amoebophilus simplex (Zygomycota). Eur J Soil Biol 44(1):80–83.  https://doi.org/10.1016/j.ejsobi.2007.05.005 CrossRefGoogle Scholar
  45. Mrva M (2011) Mayorella vespertilioides Page, 1983 (Amoebozoa)—new host for the ectoparasitic fungus Amoebophilus simplex (Zygomycota). Biologia 66:645–647CrossRefGoogle Scholar
  46. Old KM, Darbyshire JF (1978) Soil fungi as food for giant amoebae. Soil Biol Biochem 10(2):93–100.  https://doi.org/10.1016/0038-0717(78)90077-9 CrossRefGoogle Scholar
  47. Pajdak-Stós A, Wazny R, Fialkowska E (2016) Can a predatory fungus (Zoophagus sp.) endanger the rotifer populations in activated sludge? Fungal Ecol 23:75–78.  https://doi.org/10.1016/j.funeco.2016.06.005 CrossRefGoogle Scholar
  48. Penard E (1902) Faune rhizopodique du bassin du Léman. Kündig, Genève, p 714.  https://doi.org/10.5962/bhl.title.1711 Google Scholar
  49. Rodríguez-Zaragoza S (1994) Ecology of free-living amoebae. Crit Rev Microbiol 20(3):225–241.  https://doi.org/10.3109/10408419409114556 CrossRefPubMedGoogle Scholar
  50. Sayre RM (1973) Theratromyxa weberi, an amoeba predatory on plant-parasitic nematodes. J Nematol 5(4):258–264PubMedPubMedCentralGoogle Scholar
  51. Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O’Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5):1028–1046.  https://doi.org/10.3852/16-042 CrossRefPubMedGoogle Scholar
  52. Steenbergen JN, Shuman HA, Casadevall A (2001) Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc Natl Acad Sci U S A 98(26):15245–15250.  https://doi.org/10.1073/pnas.261418798 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Steenbergen JN, Nosanchuk JD, Malliaris SD, Casadevall A (2004) Interaction of Blastomyces dermatitidis, Sporothrix schenckii, and Histoplasma capsulatum with Acanthamoeba castellanii. Infect Immun 72(6):3478–3488.  https://doi.org/10.1128/IAI.72.6.3478-3488.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tanabe Y, O’Donnell K, Saikawa M, Sugiyama J (2000) Molecular phylogeny of parasitic Zygomycota (Dimargaritales, Zoopagales) based on nuclear small subunit ribosomal DNA sequences. Mol Phylogenet Evol 16(2):253–262.  https://doi.org/10.1006/mpev.2000.0775 CrossRefPubMedGoogle Scholar
  55. Tanabe Y, Watanabe MM, Sugiyama J (2005) Evolutionary relationships among basal fungi (Chytridiomycota and Zygomycota): insights from molecular phylogenetics. J Gen Appm Microbiol 51(5):267–276.  https://doi.org/10.2323/jgam.51.267 CrossRefGoogle Scholar
  56. Tretter ED, Johnson EM, Benny GL, Lichtwardt RW, Wang Y, Kandel P, Novak SJ, Smith JF, White MM (2014) An eight-gene molecular phylogeny of the Kickxellomycotina, including the first phylogenetic placement of Asellariales. Mycologia 106(5):912–935.  https://doi.org/10.3852/13-253 CrossRefPubMedGoogle Scholar
  57. Van Waeyenberghe L, Bare J, Pasmans F, Claeys M, Bert W, Haesebrouck F, Houf K, Martel A (2013) Interaction of Aspergillus fumigatus conidia with Acanthamoeba castellanii parallels macrophage-fungus interactions. Environ Microbiol Rep 5(6):819–824.  https://doi.org/10.1111/1758-2229.12082 CrossRefPubMedGoogle Scholar
  58. Visvesvara GS, Moura H, Schuster FL (2007) Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol 50(1):1–26.  https://doi.org/10.1111/j.1574-695X.2007.00232.x CrossRefPubMedGoogle Scholar
  59. White MM (2003) First report of Basidiolum fimbriatum since 1861, with comments on its development, occurrence, distribution and relationship with other fungi. Mycol Res 107(2):245–250.  https://doi.org/10.1017/S0953756203007287 CrossRefPubMedGoogle Scholar
  60. White MM, James TY, O’Donnell K, Cafaro MJ, Tanabe Y, Sugiyama (2006) Phylogeny of the Zygomycota based on nuclear ribosomal sequence data. Mycologia 98(6):872–884.  https://doi.org/10.1080/15572536.2006.11832617 CrossRefPubMedGoogle Scholar
  61. Yajima Y, Inaba S, Degawa Y, Hoshino T, Kondo N (2013) Ultrastructure of cyst-like fungal bodies in myxomycete fruiting bodies. Karstenia 53:55–65CrossRefGoogle Scholar
  62. Yang E, Xu L, Yang Y, Zhang X, Xiang M, Wang C, An Z, Liu X (2012) Origin and evolution of carnivorism in the Ascomycota (Fungi). Proc Natl Acad Sci U S A 109(27):10960–10965.  https://doi.org/10.1073/pnas.1120915109 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Yeates GW, Foissner W (1995) Testate amoebae as predators of nematodes. Biol Fertil Soils 20(1):1–7.  https://doi.org/10.1007/BF00307834 CrossRefGoogle Scholar
  64. Yeates GW, Bongers T, De Goede RGM, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. J Nematol 25(3):315–331PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Chlamydia Research Association (CHLAREAS)Vandoeuvre-lès-NancyFrance
  2. 2.Molecular Parasitology, Institute for Specific Prophylaxis and Tropical MedicineMedical University of ViennaViennaAustria
  3. 3.Institute of Diagnostic VirologyFriedrich-Loeffler-Institut, Federal Research Institute for Animal HealthGreifswald-Insel RiemsGermany
  4. 4.TREDI Research Department, Faculty of MedicineTechnopôle de Nancy-BraboisVandœuvre-lès-NancyFrance
  5. 5.Central Institute of the Federal Armed Forces Medical ServicesKoblenzGermany

Personalised recommendations