Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Diversity of free-living amoebae in soils and their associated human opportunistic bacteria


Free-living amoebae (FLA) are ubiquitous protozoa found worldwide in the environment. They feed by phagocytosis on various microorganisms. However, some bacteria, i.e., amoebae-resistant bacteria (ARB) or bacterial endocytobionts, can resist phagocytosis and even multiply inside FLA. This study investigated the diversity of culturable FLA in various soils from agricultural and mining sites and their bacterial endocytobionts. FLA were cultured on non-nutrient agar with alive Escherichia coli and identified by PCR and sequencing. Amoebae were lysed and bacterial endocytobionts were cultured on TSA 1/10 and Drigalski medium. Bacterial isolates were identified by PCR and 16S rDNA sequencing and characterized for their antibiotic resistance properties. To measure bacterial virulence, the amoebal model Dictyostelium discoideum was used. The analysis of FLA diversity showed that Tetramitus was the most prevalent genus in agricultural soil from Burkina Faso (73%) and garden soil from Vietnam (42%) while Naegleria and Acanthamoeba were dominant genera in mining soil from Vietnam (55%) and French alpine soil (77%). Some genera were only present in one out of the four soils analyzed. The bacterial endocytobiont included Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Human opportunistic pathogens identified as Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Burkholderia cepacia were found associated with amoebae including Micriamoeba, Tetramitus, Willaertia, or Acanthamoeba. Some of these bacteria showed various antibiotic resistance phenotypes and were virulent. Our study confirms that the occurrence of these opportunistic bacteria with FLA in soils may be important for the survival, multiplication, and spread of pathogens in the environment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Adamek M, Overhage J, Bathe S et al (2011) Genotyping of environmental and clinical Stenotrophomonas maltophilia isolates and their pathogenic potential. PLoS One 6:e27615. https://doi.org/10.1371/journal.pone.0027615

  2. Amissah NA, Gryseels S, Tobias NJ et al (2014) Investigating the role of free-living amoebae as a reservoir for Mycobacterium ulcerans. PLoS Negl Trop Dis 8:e3148. https://doi.org/10.1371/journal.pntd.0003148

  3. Atlan D, Coupat-Goutaland B, Risler A et al (2012) Micriamoeba tesseris nov. gen. nov. sp.: a new taxon of free-living small-sized amoebae non-permissive to virulent Legionellae. Protist 163:888–902. https://doi.org/10.1016/j.protis.2012.04.006

  4. Balczun C, Scheid P (2017) Free-Living amoebae as hosts for and vectors of intracellular microorganisms with public health significance. Viruses 9:65. https://doi.org/10.3390/v9040065

  5. Buscher A, Li L, Han XY, Trautner BW (2010) Aortic valve endocarditis possibly caused by a Haematobacter-like species. J Clin Microbiol 48:3791–3793. https://doi.org/10.1128/JCM.00238-10

  6. Canteón R (2009) Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin Microbiol Infect 15:20–25. https://doi.org/10.1111/j.1469-0691.2008.02679.x

  7. Cateau E, Maisonneuve E, Peguilhan S et al (2014) Stenotrophomonas maltophilia and Vermamoeba vermiformis relationships: bacterial multiplication and protection in amoebal-derived structures. Res Microbiol 165:847–851. https://doi.org/10.1016/j.resmic.2014.10.004

  8. Cirillo JD, Falkow S, Tompkins LS, Bermudez LE (1997) Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect Immun 65:3759–3767

  9. Cosson P, Zulianello L, Join-Lambert O et al (2002) Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J Bacteriol 184:3027–3033. https://doi.org/10.1128/JB.184.11.3027-3033.2002

  10. De Man JC (1975) The probability of most probable numbers. Appl Microbiol Biotechnol 1:67–78

  11. Delafont V, Bouchon D, Héchard Y, Moulin L (2016) Environmental factors shaping cultured free-living amoebae and their associated bacterial community within drinking water network. Water Res 100:382–392. https://doi.org/10.1016/j.watres.2016.05.044

  12. Delafont V, Brouke A, Bouchon D et al (2013) Microbiome of free-living amoebae isolated from drinking water. Water Res 47:6958–6965. https://doi.org/10.1016/j.watres.2013.07.047

  13. Deredjian A, Alliot N, Blanchard L et al (2016) Occurrence of Stenotrophomonas maltophilia in agricultural soils and antibiotic resistance properties. Res Microbiol 167:313–324. https://doi.org/10.1016/j.resmic.2016.01.001

  14. Deredjian A, Colinon C, Hien E et al (2014) Low occurrence of Pseudomonas aeruginosa in agricultural soils with and without organic amendment. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2014.00053

  15. Evstigneeva A, Raoult D, Karpachevskiy L, La Scola B (2009) Amoeba co-culture of soil specimens recovered 33 different bacteria, including four new species and Streptococcus pneumoniae. Microbiology 155:657–664. https://doi.org/10.1099/mic.0.022970-0

  16. Farra A, Bekondi C, Tricou V et al (2017) Free-living amoebae isolated in the Central African Republic: epidemiological and molecular aspects. Pan Afr Med J. 10.11604/pamj.2017.26.57.9021

  17. Favre-Bonte S (2003) Biofilm formation by Pseudomonas aeruginosa: role of the C4-HSL cell-to-cell signal and inhibition by azithromycin. J Antimicrob Chemother 52:598–604. https://doi.org/10.1093/jac/dkg397

  18. Froquet R, Lelong E, Marchetti A, Cosson P (2008) Dictyostelium discoideum: a model host to measure bacterial virulence. Nat Protoc 4:25–30. https://doi.org/10.1038/nprot.2008.212

  19. Garcia-Sanchez A, Ariza C, Ubeda J et al (2013) Free-living amoebae in sediments from the Lascaux Cave in France. Int J Speleol 42:9–13. https://doi.org/10.5038/1827-806X.42.1.2

  20. Geisen S, Fiore-Donno AM, Walochnik J, Bonkowski M (2014) Acanthamoeba everywhere: high diversity of Acanthamoeba in soils. Parasitol Res 113:3151–3158. https://doi.org/10.1007/s00436-014-3976-8

  21. Cavados CFG, Pires ES, Chaves JQ et al (2017) Isolation and genetic characterization of Lysinibacillus sphaericus strains found in mosquito larvae (Diptera: Culicidae). Res Rep Trop Med Volume 8:17–20. https://doi.org/10.2147/RRTM.S124066

  22. Greub G, Raoult D (2004) Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 17:413–433. https://doi.org/10.1128/CMR.17.2.413-433.2004

  23. Guo GN, Zhou X, Zhao R et al (2015) Paenibacillus herberti sp. nov., an endophyte isolated from Herbertus sendtneri. Antonie Van Leeuwenhoek 108:587–596. https://doi.org/10.1007/s10482-015-0514-3

  24. Hancock RE (1998) Resistance mechanisms in Pseudomonas aeruginosa and other non-fermentative gram-negative bacteria. Clin Infect Dis 27:S93–S99

  25. Helsel LO, Hollis D, Steigerwalt AG, et al (2007) Identification of “Haematobacter,” a new genus of aerobic gram-negative rods isolated from clinical specimens, and reclassification of Rhodobacter massiliensis as “Haematobacter massiliensis comb. nov.” J Clin Microbiol 45:1238–1243. doi: https://doi.org/10.1128/JCM.01188-06

  26. Hoffmann R, Michel R (2001) Distribution of free-living amoebae (FLA) during preparation and supply of drinking water. Int J Hyg Environ Health 203:215–219. https://doi.org/10.1078/S1438-4639(04)70031-0

  27. Huws SA, Morley RJ, Jones MV et al (2008) Interactions of some common pathogenic bacteria with Acanthamoeba polyphaga: interactions of bacteria with amoebae. FEMS Microbiol Lett 282:258–265. https://doi.org/10.1111/j.1574-6968.2008.01123.x

  28. Ikeda M, Yagihara Y, Tatsuno K et al (2015) Clinical characteristics and antimicrobial susceptibility of Bacillus cereus blood stream infections. Ann Clin Microbiol Antimicrob. https://doi.org/10.1186/s12941-015-0104-2

  29. Jacquier N, Aeby S, Lienard J, Greub G (2013) Discovery of new intracellular pathogens by amoebal coculture and amoebal enrichment approaches. J Vis Exp. https://doi.org/10.3791/51055

  30. José Maschio V, Corção G, Rott MB (2015) Identification of Pseudomonas spp. as amoeba-resistant microorganisms in isolates of Acanthamoeba. Rev Inst Med Trop São Paulo 57:81–83. https://doi.org/10.1590/S0036-46652015000100012

  31. Lavenir R, Jocktane D, Laurent F et al (2007) Improved reliability of Pseudomonas aeruginosa PCR detection by the use of the species-specific ecfX gene target. J Microbiol Methods 70:20–29. https://doi.org/10.1016/j.mimet.2007.03.008

  32. Leitao JH, Sousa SA, Ferreira AS et al (2010) Pathogenicity, virulence factors, and strategies to fight against Burkholderia cepacia complex pathogens and related species. Appl Microbiol Biotechnol 87:31–40. https://doi.org/10.1007/s00253-010-2528-0

  33. Looney WJ, Narita M, Mühlemann K (2009) Stenotrophomonas maltophilia: an emerging opportunist human pathogen. Lancet Infect Dis 9:312–323

  34. Loret J-F, Greub G (2010) Free-living amoebae: biological by-passes in water treatment. Int J Hyg Environ Health 213:167–175. https://doi.org/10.1016/j.ijheh.2010.03.004

  35. Lu J, Struewing I, Vereen E et al (2016) Molecular detection of Legionella spp. and their associations with Mycobacterium spp., Pseudomonas aeruginosa and amoeba hosts in a drinking water distribution system. J Appl Microbiol 120:509–521. https://doi.org/10.1111/jam.12996

  36. Mahenthiralingam E, Bischof J, Byrne SK et al (2000) DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J Clin Microbiol 38:3165–3173

  37. Majid MAA, Mahboob T, Mong BG et al (2017) Pathogenic waterborne free-living amoebae: an update from selected Southeast Asian countries. PLoS One 12:e0169448

  38. Mariappan V, Vellasamy KM, Thimma J et al (2013) Infection of Burkholderia cepacia induces homeostatic responses in the host for their prolonged survival: the microarray perspective. PLoS One 8:e77418. https://doi.org/10.1371/journal.pone.0077418

  39. Marolda CL, Hauröder B, John MA et al (1999) Intracellular survival and saprophytic growth of isolates from the Burkholderia cepacia complex in free-living amoebae. Microbiology 145:1509–1517

  40. Maschio VJ, Corção G, Bücker F et al (2015) Identification of Paenibacillus as a symbiont in Acanthamoeba. Curr Microbiol 71:415–420. https://doi.org/10.1007/s00284-015-0869-8

  41. Mohaghegh MA, Azimi Resketi M, Mohammadimanesh R et al (2016) Soil contamination with free-living amoeba in north of Iran. Int J Infect. 10.17795/iji-37923

  42. Muchesa P, Leifels M, Jurzik L et al (2017) Coexistence of free-living amoebae and bacteria in selected South African hospital water distribution systems. Parasitol Res 116:155–165. https://doi.org/10.1007/s00436-016-5271-3

  43. Mulec J, Dietersdorfer E, Üstüntürk-Onan M, Walochnik J (2016) Acanthamoeba and other free-living amoebae in bat guano, an extreme habitat. Parasitol Res 115:1375–1383. https://doi.org/10.1007/s00436-015-4871-7

  44. Ouyang J, Pei Z, Lutwick L et al (2008) Paenibacillus thiaminolyticus: a new cause of human infection, inducing bacteremia in a patient on hemodialysis. Ann Clin Lab Sci 38:393–400

  45. Pagnier I, Valles C, Raoult D, La Scola B (2015) Isolation of Vermamoeba vermiformis and associated bacteria in hospital water. Microb Pathog 80:14–20. https://doi.org/10.1016/j.micpath.2015.02.006

  46. Pelandakis M, Pernin P (2002) Use of multiplex PCR and PCR restriction enzyme analysis for detection and exploration of the variability in the free-living amoeba Naegleria in the environment. Appl Environ Microbiol 68:2061–2065. https://doi.org/10.1128/AEM.68.4.2061-2065.2002

  47. Pinot C, Deredjian A, Nazaret S et al (2011) Identification of Stenotrophomonas maltophilia strains isolated from environmental and clinical samples: a rapid and efficient procedure: Sten. maltophilia identification. J Appl Microbiol 111:1185–1193. https://doi.org/10.1111/j.1365-2672.2011.05120.x

  48. Ramirez E, Robles E, Bonilla P et al (2005) Occurrence of pathogenic free-living amoebae and bacterial indicators in a constructed wetland treating domestic wastewater from a single household. Eng Life Sci 5:253–258. https://doi.org/10.1002/elsc.200420071

  49. Ramirez E, Robles E, Martinez B et al (2014) Distribution of free-living amoebae in a treatment system of textile industrial wastewater. Exp Parasitol 145:S34–S38. https://doi.org/10.1016/j.exppara.2014.07.006

  50. Reyes-Batlle M, Wagner C, Zamora-Herrera J et al (2016) Isolation and molecular identification of Vermamoeba vermiformis strains from soil sources in El Hierro Island, Canary Islands, Spain. Curr Microbiol 73:104–107. https://doi.org/10.1007/s00284-016-1035-7

  51. Rodriguez Zaragoza S, Mayzlish E, Steinberger Y (2005) Seasonal changes in free-living amoeba species in the root canopy of Zygophyllum dumosum in the Negev Desert, Israel. Microb Ecol 49:134–141. https://doi.org/10.1007/s00248-003-1056-1

  52. Rodríguez-Zaragoza S (1994) Ecology of free-living amoebae. Crit Rev Microbiol 20:225–241

  53. Rodríguez-Zaragoza S, Garcia S (1997) Species richness and abundance of naked amebae in the rhizoplane of the desert plant Escontria chiotilla (cactaceae). J Eukaryot Microbiol 44:122–126

  54. Scheid P (2014) Relevance of free-living amoebae as hosts for phylogenetically diverse microorganisms. Parasitol Res 113:2407–2414. https://doi.org/10.1007/s00436-014-3932-7

  55. Scheikl U, Sommer R, Kirschner A et al (2014) Free-living amoebae (FLA) co-occurring with legionellae in industrial waters. Eur J Protistol 50:422–429. https://doi.org/10.1016/j.ejop.2014.04.002

  56. Scheikl U, Tsao H-F, Horn M et al (2016) Free-living amoebae and their associated bacteria in Austrian cooling towers: a 1-year routine screening. Parasitol Res 115:3365–3374. https://doi.org/10.1007/s00436-016-5097-z

  57. Schmitz-Esser S, Toenshoff ER, Haider S et al (2008) Diversity of bacterial endosymbionts of environmental Acanthamoeba isolates. Appl Environ Microbiol 74:5822–5831. https://doi.org/10.1128/AEM.01093-08

  58. Schroeder JM, Booton GC, Hay J et al (2001) Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of Acanthamoebae from humans with keratitis and from sewage sludge. J Clin Microbiol 39:1903–1911. https://doi.org/10.1128/JCM.39.5.1903-1911.2001

  59. Schulz F, Tyml T, Pizzetti I et al (2015) Marine amoebae with cytoplasmic and perinuclear symbionts deeply branching in the Gammaproteobacteria. Sci Rep. https://doi.org/10.1038/srep13381

  60. Selezska K, Kazmierczak M, Müsken M et al (2012) Pseudomonas aeruginosa population structure revisited under environmental focus: impact of water quality and phage pressure: environmental P. aeruginosa population structure. Environ Microbiol 14:1952–1967. https://doi.org/10.1111/j.1462-2920.2012.02719.x

  61. Streeter K, Neuman C, Thompson J et al (2016) The characteristics of genetically related Pseudomonas aeruginosa from diverse sources and their interaction with human cell lines. Can J Microbiol 62:233–240. https://doi.org/10.1139/cjm-2015-0536

  62. Thioulouse J, Dray S (2007) Interactive multivariate data analysis in R with the ade4 and ade4TkGUI packages. J Stat Softw 22(5). https://doi.org/10.18637/jss.v022.i05

  63. Thomas V, Herrera-Rimann K, Blanc DS, Greub G (2006) Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl Environ Microbiol 72:2428–2438. https://doi.org/10.1128/AEM.72.4.2428-2438.2006

  64. Tyml T, Skulinová K, Kavan J et al (2016) Heterolobosean amoebae from Arctic and Antarctic extremes: 18 novel strains of Allovahlkampfia, Vahlkampfia and Naegleria. Eur J Protistol 56:119–133. https://doi.org/10.1016/j.ejop.2016.08.003

  65. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

  66. Winstanley C, McClean S, Drevinek P et al (2015) Phenotypic characterization of an international Pseudomonas aeruginosa reference panel: strains of cystic fibrosis (CF) origin show less in vivo virulence than non-CF strains. Microbiology 161:1961–1977. https://doi.org/10.1099/mic.0.000155

Download references


We wish to thank Nicole Lloyd, a native English speaker, for reviewing this article prior to publication.


This work was supported by the CNRS (Centre National de la Recherche Scientifique). Elodie Denet was funded by a grant from the Ministère de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche.

Author information

Correspondence to Elodie Denet.

Electronic supplementary material


(DOCX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Denet, E., Coupat-Goutaland, B., Nazaret, S. et al. Diversity of free-living amoebae in soils and their associated human opportunistic bacteria. Parasitol Res 116, 3151–3162 (2017). https://doi.org/10.1007/s00436-017-5632-6

Download citation


  • Free-living amoebae
  • Soil
  • Bacterial endocytobiont
  • Human pathogen
  • Antibiotic resistance
  • Virulence