Advertisement

Parasitology Research

, Volume 116, Issue 12, pp 3265–3274 | Cite as

Spore load and immune response of honey bees naturally infected by Nosema ceranae

  • Wenfeng Li
  • Jay D. Evans
  • Jianghong Li
  • Songkun Su
  • Michele Hamilton
  • Yanping ChenEmail author
Original Paper

Abstract

Nosema ceranae causes widespread infection in adult workers of European honey bees, Apis mellifera, and has often been linked to honey bee colony losses worldwide. Previous investigations of honey bee immune response to N. ceranae infection were largely based on laboratory experiment, however, little is known about the immune response of honey bees that are naturally infected by N. ceranae. Here, we compared the infection levels of N. ceranae in three different categories of adult bees (emergent bees, nurses, and foragers) and detected the host immune response to the N. ceranae infection under natural conditions. Our studies showed that the Nosema spore load and infection prevalence varied among the different types of adult workers, and both of them increased as honey bees aged: No infection was detected in emergent bees, nurses had a medium spore load and prevalence, while foragers were with the highest Nosema infection level and prevalence. Quantification of the mRNA levels of antimicrobial peptides (abaecin, apidaecin, defensin-1, defensin-2, and hymenoptaecin) and microbial recognition proteins (PGRP-S1, PGRP-S2, PGRP-S3, PGRP-LC, GNBP1-1, and GNBP1-2) confirmed the involvement of the Toll and/or Imd immune pathways in the host response to N. ceranae infection, and revealed an activation of host immune response by N. ceranae infection under natural conditions. Additionally, the levels of immune response were positively correlated with the Nosema spore loads in the infected bees. The information gained from this study will be relevant to the predictive modeling of honey bee disease dynamics for Nosema disease prevention and management.

Keywords

Nosema ceranae Apis mellifera Immune response Antimicrobial peptides Microbial recognition proteins 

Notes

Acknowledgements

We thank Bart Smith, Sam Abban, and Andy Ulsamer for their laboratory and field assistance. We also thank anonymous reviewers for their helpful comments. The work is supported by United States Department of Agriculture—National Institute of Food and Agriculture (USDA-NIFA) grant 2014-67013-21784 and the Chinese fund for Modern Agro-industry Technology Research System (No CARS-45-KXJ3).

Supplementary material

436_2017_5630_MOESM1_ESM.docx (23 kb)
Table S1 (DOCX 23 kb)

References

  1. Aizen MA, Harder LD (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr Biol 19:915–918CrossRefPubMedGoogle Scholar
  2. Alaux C, Brunet J-L, Dussaubat C, Mondet F, Tchamitchan S, Cousin M, Brillard J, Baldy A, Belzunces LP, Le Conte Y (2010) Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ Microbiol 12:774–782CrossRefPubMedPubMedCentralGoogle Scholar
  3. Antúnez K, Martín-Hernández R, Prieto L, Meana A, Zunino P, Higes M (2009) Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ Microbiol 11:2284–2290CrossRefPubMedGoogle Scholar
  4. Bischoff V, Vignal C, Duvic B, Boneca IG, Hoffmann JA, Royet J (2006) Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog 2:e14CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cantwell GE (1970) Standard methods for counting Nosema spores. Am Bee J 110:222–223Google Scholar
  6. Chaimanee V, Chantawannakul P, Chen Y, Evans JD, Pettis JS (2012) Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. J Insect Physiol 58:1090–1095CrossRefPubMedGoogle Scholar
  7. Chen Y, Evans JD, Smith IB, Pettis JS (2008) Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. J Invertebr Pathol 97:186–188CrossRefPubMedGoogle Scholar
  8. Chen YP, Higgins JA, Feldlaufer MF (2005) Quantitative real-time reverse transcription-PCR analysis of deformed wing virus infection in the honeybee (Apis mellifera L.) Appl Environ Microbiol 71:436–441CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen Y, Huang Z (2010) Nosema ceranae, a newly identified pathogen of Apis mellifera in the USA and Asia. Apidologie 41:364–374CrossRefGoogle Scholar
  10. Cornman RS, Tarpy DR, Chen Y, Jeffreys L, Lopez D, Pettis JS, vanEngelsdorp D, Evans JD (2012) Pathogen webs in collapsing honey bee colonies. PLoS One 7:e43562CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan P-L, Briese T, Hornig M, Geiser DM, Martinson V, vanEngelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui L, Hutchison SK, Simons JF, Egholm M, Pettis JS, Lipkin WI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287CrossRefPubMedGoogle Scholar
  12. Dhabhar FS (2014) Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res 58:193–210CrossRefPubMedGoogle Scholar
  13. Evans JD, Aronstein K, Chen YP, Hetru C, Imler JL, Jiang H, Kanost M, Thompson GJ, Zou Z, Hultmark D (2006) Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol Biol 15:645–656CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fleming JC, Schmehl DR, Ellis JD (2015) Characterizing the impact of commercial pollen substitute diets on the level of Nosema spp. in honey bees (Apis mellifera L.) PLoS One 10:e0132014CrossRefPubMedPubMedCentralGoogle Scholar
  15. Forsgren E, Fries I (2010) Comparative virulence of Nosema ceranae and Nosema apis in individual European honey bees. Vet Parasitol 170:212–217CrossRefPubMedGoogle Scholar
  16. Fries I (2010) Nosema ceranae in European honey bees (Apis mellifera). J Invertebr Pathol 103(Supplement):S73–S79CrossRefPubMedGoogle Scholar
  17. Fries I, Feng F, da Silva A, Slemenda SB, Pieniazek NJ (1996) Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur J Protistol 32:356–365CrossRefGoogle Scholar
  18. Genersch E (2010) Honey bee pathology: Current threats to honey bees and beekeeping. Appl Microbiol Biotechnol 87:87–97CrossRefPubMedGoogle Scholar
  19. Gobert V, Gottar M, Matskevich AA, Rutschmann S, Royet J, Belvin M, Hoffmann JA, Ferrandon D (2003) Dual activation of the Drosophila Toll pathway by two pattern recognition receptors. Science 302:2126–2130CrossRefPubMedGoogle Scholar
  20. Gottar M, Gobert V, Matskevich AA, Reichhart J-M, Wang C, Butt TM, Belvin M, Hoffmann JA, Ferrandon D (2006) Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127:1425–1437CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gottar M, Gobert V, Michel T, Belvin M, Duyk G, Hoffmann JA, Ferrandon D, Royet J (2002) The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416:640–644CrossRefPubMedGoogle Scholar
  22. Higes M, Martín R, Meana A (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J Invertebr Pathol 92:93–95CrossRefPubMedGoogle Scholar
  23. Higes M, Martín-Hernández R, Botías C, Bailón EG, González-Porto AV, Barrios L, del Nozal MJ, Bernal JL, Jiménez JJ, Palencia PG, Meana A (2008a) How natural infection by Nosema ceranae causes honeybee colony collapse. Environ Microbiol 10:2659–2669CrossRefPubMedGoogle Scholar
  24. Higes M, Martín-Hernández R, Garrido-Bailón E, García-Palencia P, Meana A (2008b) Detection of infective Nosema ceranae (Microsporidia) spores in corbicular pollen of forager honeybees. J Invertebr Pathol 97:76–78CrossRefPubMedGoogle Scholar
  25. Higes M, Martín-Hernández R, Garrido-Bailón E, González-Porto AV, García-Palencia P, Meana A, del Nozal MJ, Mayo R, Bernal JL (2009) Honeybee colony collapse due to Nosema ceranae in professional apiaries. Environ Microbiol Rep 1:110–113CrossRefPubMedGoogle Scholar
  26. Higes M, Martín-Hernández R, Meana A (2010) Nosema ceranae in Europe: an emergent type C nosemosis. Apidologie 41:375–392CrossRefGoogle Scholar
  27. Hoffmann JA (2003) The immune response of Drosophila. Nature 426:33–38CrossRefPubMedGoogle Scholar
  28. Huang Q, Chen YP, Wang RW, Cheng S, Evans JD (2016) Host-parasite interactions and purifying selection in a Microsporidian parasite of honey bees. PLoS One 11:e0147549CrossRefPubMedPubMedCentralGoogle Scholar
  29. Huang W-F, Jiang J-H, Chen Y-W, Wang C-H (2007) A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie 38:30–37CrossRefGoogle Scholar
  30. Invernizzi C, Abud C, Tomasco IH, Harriet J, Ramallo G, Campá J, Katz H, Gardiol G, Mendoza Y (2009) Presence of Nosema ceranae in honeybees (Apis mellifera) in Uruguay. J Invertebr Pathol 101:150–153CrossRefPubMedGoogle Scholar
  31. Jack CJ, Lucas HM, Webster TC, Sagili RR (2016) Colony level prevalence and intensity of Nosema ceranae in honey bees (Apis mellifera L.) PLoS One 11:e0163522CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kim Y-S, Ryu J-H, Han S-J, Choi K-H, Nam K-B, Jang I-H, Lemaitre B, Brey PT, Lee W-J (2000) Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and β-1,3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. J Biol Chem 275:32721–32727CrossRefPubMedGoogle Scholar
  33. Klee J, Besana AM, Genersch E, Gisder S, Nanetti A, Tam DQ, Chinh TX, Puerta F, Ruz JM, Kryger P, Message D, Hatjina F, Korpela S, Fries I, Paxton RJ (2007) Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invertebr Pathol 96:1–10CrossRefPubMedGoogle Scholar
  34. Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743CrossRefPubMedGoogle Scholar
  35. Li W, Evans JD, Huang Q, Rodríguez-García C, Liu J, Hamilton M, Grozinger CM, Webster TC, Su S, Chen YP (2016) Silencing the honey bee (Apis mellifera) naked cuticle gene (nkd) improves host immune function and reduces Nosema ceranae infections. Appl Environ Microbiol 82:6779–6787CrossRefPubMedPubMedCentralGoogle Scholar
  36. Li W, Huang ZY, Liu F, Li Z, Yan L, Zhang S, Chen S, Zhong B, Su S (2013) Molecular cloning and characterization of juvenile hormone acid methyltransferase in the honey bee, Apis mellifera, and its differential expression during caste differentiation. PLoS One 8:e68544CrossRefPubMedPubMedCentralGoogle Scholar
  37. Martínez J, Leal G, Conget P (2012) Nosema ceranae an emergent pathogen of Apis mellifera in Chile. Parasitol Res 111:601–607CrossRefPubMedGoogle Scholar
  38. Martín-Hernández R, Botías C, Barrios L, Martínez-Salvador A, Meana A, Mayack C, Higes M (2011) Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera). Parasitol Res 109:605–612CrossRefPubMedGoogle Scholar
  39. Mayack C, Naug D (2009) Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. J Invertebr Pathol 100:185–188CrossRefPubMedGoogle Scholar
  40. Michel T, Reichhart J-M, Hoffmann JA, Royet J (2001) Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414:756–759CrossRefPubMedGoogle Scholar
  41. Mulholland G, Traver B, Johnson N, Fell R (2012) Individual variability of Nosema ceranae infections in Apis mellifera colonies. Insects 3:1143–1155CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mutti NS, Dolezal AG, Wolschin F, Mutti JS, Gill KS, Amdam GV (2011) IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate. J Exp Biol 214:3977–3984CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pettis JS, Lichtenberg EM, Andree M, Stitzinger J, Rose R, van Engelsdorp D (2013) Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One 8:e70182CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pettis J, van Engelsdorp D, Johnson J, Dively G (2012) Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften 99:153–158CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pili-Floury S, Leulier F, Takahashi K, Saigo K, Samain E, Ueda R, Lemaitre B (2004) In vivo RNA interference analysis reveals an unexpected role for GNBP1 in the defense against Gram-positive bacterial infection in Drosophila adults. J Biol Chem 279:12848–12853CrossRefPubMedGoogle Scholar
  46. Ratnieks FLW, Carreck NL (2010) Clarity on honey bee collapse? Science 327:152–153CrossRefPubMedGoogle Scholar
  47. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108CrossRefPubMedGoogle Scholar
  48. Schwarz RS, Evans JD (2013) Single and mixed-species trypanosome and Microsporidia infections elicit distinct, ephemeral cellular and humoral immune responses in honey bees. Dev Comp Immunol 40:300–310CrossRefPubMedGoogle Scholar
  49. Seeley T (1982) Adaptive significance of the age polyethism schedule in honeybee colonies. Behav Ecol Sociobiol 11:287–293CrossRefGoogle Scholar
  50. Smart MD, Sheppard WS (2012) Nosema ceranae in age cohorts of the western honey bee (Apis mellifera). J Invertebr Pathol 109:148–151CrossRefPubMedGoogle Scholar
  51. Smith ML (2012) The honey bee parasite Nosema ceranae: Transmissible via food exchange? PLoS One 7:e43319CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sokół R, Michalczyk M (2016) Detection of Nosema spp. in worker bees, pollen and bee bread during the honey flow season. Acta Vet Brno 85:261–266CrossRefGoogle Scholar
  53. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115CrossRefPubMedPubMedCentralGoogle Scholar
  54. van Engelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, Frazier J, Cox-Foster D, Chen Y, Underwood R, Tarpy DR, Pettis JS (2009) Colony collapse disorder: a descriptive study. PLoS One 4:e6481CrossRefGoogle Scholar
  55. van Engelsdorp D, Hayes J, Underwood RM, Pettis J (2008) A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS One 3:e4071CrossRefPubMedGoogle Scholar
  56. van Engelsdorp D, Underwood R, Caron D, Hayes J (2007) An estimate of managed colony losses in the winter of 2006–2007: a report commissioned by the apiary inspectors of America. Am Bee J 147:599–603Google Scholar
  57. Vidau C, Diogon M, Aufauvre J, Fontbonne R, Viguès B, Brunet J-L, Texier C, Biron DG, Blot N, El Alaoui H, Belzunces LP, Delbac F (2011) Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 6:e21550CrossRefPubMedPubMedCentralGoogle Scholar
  58. Williams GR, Sampson MA, Shutler D, Rogers REL (2008) Does fumagillin control the recently detected invasive parasite Nosema ceranae in western honey bees (Apis mellifera)? J Invertebr Pathol 99:342–344CrossRefPubMedGoogle Scholar
  59. Wu JY, Smart MD, Anelli CM, Sheppard WS (2012) Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection. J Invertebr Pathol 109:326–329CrossRefPubMedGoogle Scholar
  60. Yang B, Peng G, Li T, Kadowaki T (2013) Molecular and phylogenetic characterization of honey bee viruses, Nosema microsporidia, protozoan parasites, and parasitic mites in China. Ecol Evol 3:298–311CrossRefPubMedPubMedCentralGoogle Scholar
  61. Yang X, Cox-Foster DL (2005) Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proc Natl Acad Sci U S A 102:7470–7475Google Scholar
  62. Yoshiyama M, Kimura K (2011) Distribution of Nosema ceranae in the European honeybee, Apis mellifera in Japan. J Invertebr Pathol 106:263–267CrossRefPubMedGoogle Scholar
  63. Zaidman-Rémy A, Hervé M, Poidevin M, Pili-Floury S, Kim M-S, Blanot D, Oh B-H, Ueda R, Mengin-Lecreulx D, Lemaitre B (2006) The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24:463–473CrossRefPubMedGoogle Scholar
  64. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395CrossRefPubMedGoogle Scholar

Copyright information

© US Government (outside the USA) 2017

Authors and Affiliations

  • Wenfeng Li
    • 1
  • Jay D. Evans
    • 1
  • Jianghong Li
    • 1
    • 2
  • Songkun Su
    • 2
  • Michele Hamilton
    • 1
  • Yanping Chen
    • 1
    Email author
  1. 1.USDA-ARS Bee Research LaboratoryBeltsvilleUSA
  2. 2.College of Bee ScienceFujian Agriculture and Forestry UniversityFuzhouPeople’s Republic of China

Personalised recommendations