Parasitology Research

, Volume 116, Issue 10, pp 2813–2819 | Cite as

Three-dimensional morphology of rigid structures as a tool for taxonomic studies of Dactylogyridae (Monogenea)

  • María A. RossinEmail author
  • Pablo N. De Francesco
  • Juan T. Timi
Original Paper


Dactylogyridae is overwhelmingly the most abundant and diverse taxon among monogeneans in continental waters of South America. Their small body size requires considerable sampling effort and training for collecting and identifying the worms from the gills, skin, nasal cavities, and other microhabitats. Indeed, diagnostic characteristics as sclerites and male copulatory complex are generally less than 100-μm long and are essential for taxonomic description and identification of species. Here, a combination of simple and routine methods for three-dimensional morphological studies on hard structures is proposed for dactylogirids: SDS treatment for clarification of specimens and enzymatic digestion with proteinase K for freeing sclerotized structures, followed by laser confocal microscopy. This method is applicable to fresh or fixed specimens and does not require staining or dehydration. Indeed, stable autofluorescence emission is detectable at 500–530 nm for bars, anchors, and male copulatory complex when excited by argon laser. Advantages of this protocol over previous methodologies for taking laser confocal images are discussed. Open access software for image processing was used for three-dimensional reconstruction of sclerotized structures generating models and full 360° rotation videos.


Monogenea SDS treatment Proteinase K treatment Laser confocal images Autofluorescence Three-dimensional reconstruction 



The authors wish to thank to Dr. Pablo Scarabotti, Instituto Nacional de Limnologia (INALI), and Lic. Manuel Irigoitia, Instituto de Investigaciones Marinas y Costeras (IIMyC), for providing fish samples of Pygocentrus nattereri from Paraná River. We also like to thank Dra. M. Daniela Villamonte and Lic. Viviana Daniel for the support obtaining images from the Nikon C1 SiR confocal microscope and the anonymous reviewer for your suggestions that improved the quality of our work. Finding: this work was supported by the Agencia Nacional de Promoción Científica y Tecnológica (grant number ANPCYT-PICT 2015 N° 2013); CONICET (grant number CONICET-PIP N° 112-20150100973); and Universidad Nacional de Mar del Plata, Argentina (grant number UNMdP-EXA 869/16).

Compliance with ethical standards

The research has been conducted according to Argentine laws. All applicable institutional, national, and international guidelines for the care and use of animals were followed. Permit for fishing was provided by the Ministerio de Asuntos Agrarios de la Provincia de Buenos Aires, Argentina (Disposición 164, August 23, 2012).

Supplementary material

436_2017_5591_Fig4_ESM.gif (263 kb)
Supplementary Fig. 1

LSCFM images. a Rhinoxenus piranhus Kritsky, Boeger and Thatcher, 1988 male copulatory complex (ventral view). b R. piranhus anchor. c Characithecium chascomusensis (Suriano, 1981) male copulatory complex (ventral view). d C. chascomusensis ventral anchor (ventral view). e C. chascomusensis ventral bar (ventral view). (GIF 262 kb)

436_2017_5591_MOESM1_ESM.tif (44.3 mb)
High Resolution Image (TIFF 45313 kb)
436_2017_5591_Fig5_ESM.gif (176 kb)
Supplementary Fig. 2

Maximum intensity Z projection. a Rhinoxenus piranhus Kritsky, Boeger and Thatcher, 1988 male copulatory complex (ventral view). b R. piranhus anchor. c Characithecium chascomusensis (Suriano, 1981) male copulatory complex (ventral view). d C. chascomusensis ventral anchor (ventral view). e Ventral bar (ventral view). (GIF 175 kb)

436_2017_5591_MOESM2_ESM.tif (44.3 mb)
High Resolution Image (TIFF 45313 kb)
436_2017_5591_MOESM3_ESM.avi (4.4 mb)
Supplementary Movie 1 Male copulatory complex of Rhinoxenus piranhus Kritsky, Boeger and Thatcher, 1988. (AVI 4467 kb)
436_2017_5591_MOESM4_ESM.avi (2.3 mb)
Supplementary Movie 2 Ventral anchor of Rhinoxenus piranhus Kritsky, Boeger & Thatcher, 1988. (AVI 2314 kb)
436_2017_5591_MOESM5_ESM.avi (4.1 mb)
Supplementary Movie 3 Male copulatory complex of Characitecium chascomusensis (Suriano, 1981). (AVI 4203 kb)
436_2017_5591_MOESM6_ESM.avi (2 mb)
Supplementary Movie 4 Ventral bar of Characitecium chascomusensis (Suriano, 1981). (AVI 2055 kb)
436_2017_5591_MOESM7_ESM.avi (3.3 mb)
Supplementary Movie 5 Ventral anchor of Characitecium chascomusensis (Suriano, 1981). (AVI 3346 kb)


  1. Boeger WA, Kritsky DC (1988) Neotropical Monogenoidea. 12. Dactylogyridae from Serrasalmus nattereri (Cypriniformes, Serrasalmidae) and aspects of their morphologic variation and distribution in the Brazilian Amazon. Proc Helminthol Soc Wash 55:188–213Google Scholar
  2. Bulantová J, Chanová M, Houžvičková L, Horák P (2011) Trichobilharzia regenti (Digenea: Schistosomatidae): changes of body wall musculature during the development from miracidium to adult worm. Micron 42:47–54. doi: 10.1016/j.micron.2010.08.003 CrossRefPubMedGoogle Scholar
  3. Dos Santos QM, Avenant-Oldewage A (2015) Soft tissue digestion of Paradiplozoon vaalense for SEM of sclerites and simultaneous molecular analysis. J Parasitol 101:94–97. doi: 10.1645/14-521.1 CrossRefPubMedGoogle Scholar
  4. Fannes W, Vanhove MP, Huyse T, Paladini G (2015) A scanning electron microscope technique for studying the sclerites of Cichlidogyrus. Parasitol Res 114:2031–2034. doi: 10.1007/s00436-015-4446-7 CrossRefPubMedGoogle Scholar
  5. Galli P, Strona G, Villa AM, Benzoni F, Stefani F, Doglia SM, Kritsky D (2006) Three-dimensional imaging of monogenoidean sclerites by confocal laser scanning microscopy. J Parasitol 92:395–399. doi: 10.1645/GE-3544RN.1 CrossRefPubMedGoogle Scholar
  6. Galli P, Strona G, Villa AM, Benzoni F, Stefani F, Doglia SM, Kritsky DC (2007) Two-dimensional versus three-dimensional morphometry of monogenoidean sclerites. Int J Parasitol 37:449–456. doi: 10.1016/j.ijpara CrossRefPubMedGoogle Scholar
  7. Garcia-Vásquez A, Shinn AP, Bron JE (2012) Development of a light microscopy stain for the sclerites of Gyrodactylus von Nordmann, 1832 (Monogenea) and related genera. Parasitol Res 110:1639–1648. doi: 10.1007/s00436-011-2675-y CrossRefPubMedGoogle Scholar
  8. da Graça RJ, Ueda BH, Oda FH, Takemoto RM (2013) Monogenea (Platyhelminthes) parasites from the gills of Hoplias aff. malabaricus (Bloch, 1794) (Pisces: Erythrinidae) in the Upper Paraná River Floodplain, states of Paraná and Mato Grosso do Sul, Brazil. Check List 9:1484–1487 ISSN 1809-127XCrossRefGoogle Scholar
  9. Harris PD, Cable J, Tinsley RC, Lazarus CM (1999) Combined ribosomal DNA and morphological analysis of individual gyrodactylid monogeneans. J Parasitol 85:188–191 7CrossRefPubMedGoogle Scholar
  10. Klaus AV, Kulasekera VL, Schawaroch V (2003) Three-dimensional visualization of insect morphology using confocal laser scanning microscopy. J Microsc 212:107–121. doi: 10.1046/j.1365-2818.2003.01235.x CrossRefPubMedGoogle Scholar
  11. Kritsky DC, Van Every LR, Boeger WA (1996a) Neotropical Monogenoidea. 27. Two new species of Telethecium gen. n. from the nasal cavities of Central Amazonian fishes and a redescription of Kritskyia moraveci Kohn, 1990 (Dactylogyridae, Ancyrocephalinae). J Helminthol Soc Wash 63:35–41Google Scholar
  12. Kritsky DC, Boeger WA, Jegu M (1996b) Neotropical Monogenoidea. 28. Ancyrocephalinae (Dactylogyridae) of piranha and their relatives (Teleostei, Serrasalmidae) from Brazil and French Guiana: species of Notozothecium Boeger and Kritsky, 1988, and Mymarothecium gen. N. J Helminthol Soc Wash 63:153–175Google Scholar
  13. Kritsky DC, Boeger WA, Jegu M (1997a) Neotropical Monogenoidea. 29. Ancyrocephalinae (Dactylogyridae) of piranha and their relatives (Teleostei, Serrasalmidae) from Brazil: species of Amphithecium Boeger and Kritsky, 1988, Heterothecium gen. n. and Pithanothecium gen. n. J Helminthol Soc Wash 64:25–54Google Scholar
  14. Kritsky DC, Boeger WA, Jegu M (1997b) Neotropical Monogenoidea. 30. Ancyrocephalinae (Dactylogyridae) of piranha and their relatives (Teleostei, Serrasalmidae) from Brazil: species of Calpidothecium gen. n., Calpidothecioides gen. n., Odothecium gen. n., and Notothecioides gen. n. J Helminthol Soc Wash 64:208–218Google Scholar
  15. Lim LHS, Furtado JI (1986) Five new species of ancylodiscoidins (Monogenea: Ancylodiscoidinae) from Notopterus chitala (Hamilton) and Notopterus notopterus (Pallas) in Peninsular Malaysia. Folia Parasitol 33:315–325Google Scholar
  16. Malmberg G (1957) Om förekomsten av Gyrodactylus påsvenska fiskar. Särtryck ur Skrifter utgivna av Södra Sveriges Fiskeriförening Ǻrsskrift 1956:19–76Google Scholar
  17. Michels J, Gorb SN (2012) Detailed three-dimensional visualization of resilin in the exoskeleton of arthropods using confocal laser scanning microscopy. J Microsc 245:1–16. doi: 10.1111/j.1365-2818.2011.03523.x CrossRefPubMedGoogle Scholar
  18. Michels J, Appel E, Gorb SN (2016) Functional diversity of resilin in Arthropoda. Beilstein J Nanotechnol 7:1241–1259. doi: 10.3762/bjnano.7.115 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Mo TA, Appleby C (1990) A special technique for studying haptoral sclerites of monogeneans. Syst Parasitol 17:103–108. doi: 10.1007/BF00009797 CrossRefGoogle Scholar
  20. Moreira J, Scholz T, Luque JL (2015) First data on the parasites of Hoplias aimara (Characiformes): description of two new species of gill monogeneans (Dactylogyridae). Acta Parasitol 60:254–260. doi: 10.1515/ap-2015-0036 CrossRefPubMedGoogle Scholar
  21. Petrov A, Papyuk M, Dmitrieva EV, Gerasev PI (2015) Architecture of haptoral musculature in three species of Ligophorus (Monogenea, Ancyrocephalidae). Proc ZIN 319:244–256. doi: 10.5281/zenodo.19833 Google Scholar
  22. Poulin R (2002) The evolution of monogenean diversity. Int J Parasitol 32:245–254. doi: 10.1016/S0020-7519(01)00329-0 CrossRefPubMedGoogle Scholar
  23. Rossin MA, Timi JT (2014) Dactylogyrid monogeneans parasitic on the Neotropical fish Oligosarcus jenynsii (Pisces: Characidae) from the Pampasic region, Argentina; with the emendation of the genus Characithecium. Zootaxa 3893:382–396. doi: 10.11646/zootaxa.3893.3.4 CrossRefPubMedGoogle Scholar
  24. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi: 10.1038/nmeth.2019 CrossRefPubMedGoogle Scholar
  25. Shinn AP, Gibson DI, Sommerville C (1993) An SEM study of the haptoral sclerites of the genus Gyrodactylus Nordmann, 1832 (Monogenea) following extraction by digestion and sonication techniques. Syst Parasitol 25:135–144. doi: 10.1007/BF00009983 CrossRefGoogle Scholar
  26. Thatcher VE (2006) Amazon fish parasites, 2nd edn. Pensoft, Sofia, p 509Google Scholar
  27. Wong WL, Tan WB, Lim LHS (2006) Sodium dodecyl sulphate as a rapid clearing agent for studying the hard parts of monogeneans and nematodes. J Helminthol 80:87–90. doi: 10.1079/JOH2005320 CrossRefPubMedGoogle Scholar
  28. Yoon GH, Jufaili SA, Freeman MA, Bron JE, Paladini G, Shinn AP (2013) Omanicotyle heterospina n. gen. et n. comb. (Monogenea: Microcotylidae) from the gills of Argyrops spinifer (Forsskål) (Teleostei: Sparidae) from the Sea of Oman. Parasit Vectors 6:170. doi: 10.1186/1756-3305-6-170 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • María A. Rossin
    • 1
    Email author
  • Pablo N. De Francesco
    • 2
  • Juan T. Timi
    • 1
  1. 1.Laboratorio de Ictioparasitología, Instituto de Investigaciones Marinas y Costeras (IIMIyC), Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Funes 3350Mar del PlataArgentina
  2. 2.Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de La Plata—Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA)La PlataArgentina

Personalised recommendations