Parasitology Research

, Volume 116, Issue 9, pp 2417–2426 | Cite as

The Toxoplasma gondii inhibitor-2 regulates protein phosphatase 1 activity through multiple motifs

  • Quentin Deveuve
  • Kevin Lesage
  • Thomas Mouveaux
  • Mathieu Gissot
Original Paper


Toxoplasma gondii has a complex life cycle characterized by multiple differentiation steps that are essential for its survival in both human and definitive feline host. Several studies have demonstrated the importance of phosphorylations by protein kinases during the life cycle of T. gondii. However, very little is known about protein phosphatases and their regulators in the parasite. We report the molecular and functional characterization of the T. gondii ortholog of the inhibitor-2 protein, designated TgI2. We show that TgI2 encompasses conserved motifs involved in the interaction and modulation of the phosphatase activity of T. gondii protein phosphatase 1, named TgPP1. We show that a specific combination of motifs is involved in binding and/or inhibition of the TgPP1 activity. We show here that the TgI2 protein is a potent inhibitor of TgPP1 phosphatase activity. TgI2 SILK and RVxF motifs are critical for regulating the activity of TgPP1, a feature that is common with the higher eukaryotes inhibitor-2 protein.


Toxoplasma Phosphatase PP1 Inhibitor-2 Plasmodium Cell-cycle SILK HYNE RVxF 

Supplementary material

436_2017_5543_MOESM1_ESM.pdf (765 kb)
Figure S1Purification of TgI2-GST and TgPP1-His tagged proteins. A: A SDS-PAGE gel stained with Coomassie-blue representing the total protein extracts before induction (NI, non-induced) and after induction (I, induced) of the expression of the TgI2-GST protein. The purified TgI2-GST protein is also represented (E, elution). Molecular weight marker (M) is on the left side of the Fig. B: A SDS-PAGE gel stained with Coomassie-blue representing the total protein extracts before induction (NI, non-induced) and after induction (I, induced) of the expression of the TgPP1-His protein. The purified TgPP1-His protein is also represented (E, elution). Molecular weight marker (M) is on the left side of the Fig. C: Graphical representation of the sequences mutated on the TgI2-GST protein. The name of the putative TgPP1-binding motif is indicated on the top of the figure. The sequence of the wild-type motif is indicated in black and the number corresponds to the aa position in the protein. The mutated aa are indicated in red. D: A SDS-PAGE gel stained with Coomassie-blue representing the purified mutated TgI2-GST proteins. The purified TgI2 proteins mutated for the SILK domain (lane 1), the RVxF domain (Lane 2), the HYNE domain (lane 3), the SILK and RVxF domains (lane 4), the SILK and HYNE domain (lane 5), the RvxF and HYNE domains (lane 6) and the SILK, RVxF and HYNE domains (lane 7) are represented. Molecular weight marker (M) is on the left side of the figure. (PDF 765 kb)
436_2017_5543_MOESM2_ESM.pdf (95 kb)
Figure S2GST is not able to inhibit TgPP1 activity. Graphical representation of the TgPP1 activity after incubation with different concentrations of the GST protein (indicated at the bottom of the figure). Activity is represented as a % of the phosphatase activity measured without inhibitor. Experiment was repeated three times with duplicate measurement. ns: non-significant. (PDF 95 kb)
436_2017_5543_MOESM3_ESM.pdf (68 kb)
Figure S3TgI2 and TgMIC1 colocalization. IFA analysis of the TgI2-HA (green) and TgMIC1 (red) localization in the tachyzoite. DAPI (blue) was used to label DNA. The phase-contrast is also presented. The scale bar is indicated at the bottom right of each picture. (PDF 68 kb)
436_2017_5543_MOESM4_ESM.docx (15 kb)
Table S1(DOCX 15 kb)


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. Berry L, Chen C-T, Reininger L, Carvalho TG, El Hajj H, Morlon-Guyot J, Bordat Y, Lebrun M, Gubbels M-J, Doerig C, Daher W (2016) The conserved apicomplexan Aurora kinase TgArk3 is involved in endodyogeny, duplication rate and parasite virulence. Cell Microbiol. doi:10.1111/cmi.12571
  3. Blader IJ, Coleman BI, Chen C-T, Gubbels M-J (2015) Lytic cycle of Toxoplasma gondii: 15 years later. Annu Rev Microbiol 69:463–485. doi:10.1146/annurev-micro-091014-104100 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bollen M, Peti W, Ragusa MJ, Beullens M (2010) The extended PP1 toolkit: designed to create specificity. Trends Biochem Sci 35:450–458. doi:10.1016/j.tibs.2010.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ceulemans H, Bollen M (2004) Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 84:1–39. doi:10.1152/physrev.00013.2003 CrossRefPubMedGoogle Scholar
  6. Connor JH, Frederick D, Huang H, Yang J, Helps NR, Cohen PTW, Nairn AC, DePaoli-Roach A, Tatchell K, Shenolikar S (2000) Cellular mechanisms regulating protein phosphatase-1: a key functional interaction between inhibitor-2 and type 1 protein phosphatase. J Biol Chem 275:18670–18675. doi:10.1074/jbc.M909312199 CrossRefPubMedGoogle Scholar
  7. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890CrossRefPubMedPubMedCentralGoogle Scholar
  8. Daher W, Oria G, Fauquenoy S, Cailliau K, Browaeys E, Tomavo S, Khalife J (2007) A Toxoplasma gondii leucine-rich repeat protein binds phosphatase type 1 protein and negatively regulates its activity. Eukaryot Cell 6:1606–1617. doi:10.1128/EC.00260-07 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Delorme V, Garcia A, Cayla X, Tardieux I (2002) A role for Toxoplasma gondii type 1 ser/thr protein phosphatase in host cell invasion. Microbes Infect / Inst Pasteur 4:271–278CrossRefGoogle Scholar
  10. Egloff M-P, Johnson DF, Moorhead G, Cohen PTW, Cohen P, Barford D (1997) Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J 16:1876–1887. doi:10.1093/emboj/16.8.1876 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ferguson DJP, Parmley SF, Tomavo S (2002) Evidence for nuclear localisation of two stage-specific isoenzymes of enolase in Toxoplasma gondii correlates with active parasite replication. Int J Parasitol 32:1399–1410CrossRefPubMedGoogle Scholar
  12. Fréville A, Cailliau-Maggio K, Pierrot C, Tellier G, Kalamou H, Lafitte S, Martoriati A, Pierce RJ, Bodart J-F, Khalife J (2013) Plasmodium falciparum encodes a conserved active inhibitor-2 for protein phosphatase type 1: perspectives for novel anti-plasmodial therapy. BMC Biol 11:80. doi:10.1186/1741-7007-11-80 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gajria B, Bahl A, Brestelli J, Dommer J, Fischer S, Gao X, Heiges M, Iodice J, Kissinger JC, Mackey AJ, Pinney DF, Roos DS, Stoeckert CJ Jr, Wang H, Brunk BP (2008) ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Res 36:D553–D556. doi:10.1093/nar/gkm981 CrossRefPubMedGoogle Scholar
  14. Gissot M, Walker R, Delhaye S, Alayi TD, Huot L, Hot D, Callebaut I, Schaeffer-Reiss C, Dorsselaer AV, Tomavo S (2013) Toxoplasma gondii Alba proteins are involved in translational control of gene expression. J Mol Biol 425:1287–1301. doi:10.1016/j.jmb.2013.01.039 CrossRefPubMedGoogle Scholar
  15. Hendrickx A, Beullens M, Ceulemans H, Den Abt T, Van Eynde A, Nicolaescu E, Lesage B, Bollen M (2009) Docking motif-guided mapping of the interactome of protein phosphatase-1. Chem Biol 16:365–371. doi:10.1016/j.chembiol.2009.02.012 CrossRefPubMedGoogle Scholar
  16. Hollin T, De Witte C, Lenne A, Pierrot C, Khalife J (2016) Analysis of the interactome of the Ser/Thr protein phosphatase type 1 in Plasmodium falciparum. BMC Genomics 17:246. doi:10.1186/s12864-016-2571-z CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hong G, Trumbly RJ, Reimann EM, Schlender KK (2000) Sds22p is a subunit of a stable isolatable form of protein phosphatase 1 (Glc7p) from Saccharomyces cerevisiae. Arch Biochem Biophys 376:288–298. doi:10.1006/abbi.2000.1715 CrossRefPubMedGoogle Scholar
  18. Huang H –b, Horiuchi A, Watanabe T, Shih S-R, Tsay H-J, Li H-C, Greengard P, Nairn AC (1999) Characterization of the inhibition of protein phosphatase-1 by DARPP-32 and inhibitor-2. J Biol Chem 274:7870–7878. doi:10.1074/jbc.274.12.7870 CrossRefPubMedGoogle Scholar
  19. Hurley TD, Yang J, Zhang L, Goodwin KD, Zou Q, Cortese M, Dunker AK, DePaoli-Roach AA (2007) Structural basis for regulation of protein phosphatase 1 by inhibitor-2. J Biol Chem 282:28874–28883. doi:10.1074/jbc.M703472200 CrossRefPubMedGoogle Scholar
  20. Jan G, Delorme V, David V, Revenu C, Rebollo A, Cayla X, Tardieux I (2007) The toxofilin-actin-PP2C complex of Toxoplasma: identification of interacting domains. Biochem J 401:711–719. doi:10.1042/BJ20061324 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Leach C, Shenolikar S, Brautigan DL (2003) Phosphorylation of phosphatase inhibitor-2 at centrosomes during mitosis. J Biol Chem 278:26015–26020. doi:10.1074/jbc.M300782200 CrossRefPubMedGoogle Scholar
  22. Meiselbach H, Sticht H, Enz R (2006) Structural analysis of the protein phosphatase 1 docking motif: molecular description of binding specificities identifies interacting proteins. Chem Biol 13:49–59. doi:10.1016/j.chembiol.2005.10.009 CrossRefPubMedGoogle Scholar
  23. Morlon-Guyot J, Berry L, Chen C-T, Gubbels M-J, Lebrun M, Daher W (2014) The Toxoplasma gondii calcium-dependent protein kinase 7 is involved in early steps of parasite division and is crucial for parasite survival: functional dissection of T. gondii CDPK7 protein. Cell Microbiol 16:95–114. doi:10.1111/cmi.12186 CrossRefPubMedGoogle Scholar
  24. Moudy R, Manning TJ, Beckers CJ (2001) The loss of cytoplasmic potassium upon host cell breakdown triggers egress of Toxoplasma gondii. J Biol Chem 276:41492–41501. doi:10.1074/jbc.M106154200 CrossRefPubMedGoogle Scholar
  25. Park IK, DePaoli-Roach AA (1994) Domains of phosphatase inhibitor-2 involved in the control of the ATP-Mg-dependent protein phosphatase. J Biol Chem 269:28919–28928PubMedGoogle Scholar
  26. Peti W, Page R (2015) Strategies to make protein serine/threonine (PP1, calcineurin) and tyrosine phosphatases (PTP1B) druggable: achieving specificity by targeting substrate and regulatory protein interaction sites. Bioorg Med Chem 23:2781–2785. doi:10.1016/j.bmc.2015.02.040 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Sugi T, Kato K, Kobayashi K, Watanabe S, Kurokawa H, Gong H, Pandey K, Takemae H, Akashi H (2010) Use of the kinase inhibitor analog 1NM-PP1 reveals a role for Toxoplasma gondii CDPK1 in the invasion step. Eukaryot Cell 9:667–670. doi:10.1128/EC.00351-09 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Suvorova ES, Francia M, Striepen B, White MW (2015) A novel bipartite centrosome coordinates the apicomplexan cell cycle. PLoS Biol 13:e1002093. doi:10.1371/journal.pbio.1002093 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Tung HY, Wang W, Chan CS (1995) Regulation of chromosome segregation by Glc8p, a structural homolog of mammalian inhibitor 2 that functions as both an activator and an inhibitor of yeast protein phosphatase 1. Mol Cell Biol 15:6064–6074CrossRefPubMedPubMedCentralGoogle Scholar
  30. Wakula P, Beullens M, Ceulemans H, Stalmans W, Bollen M (2003) Degeneracy and function of the ubiquitous RVXF motif that mediates binding to protein phosphatase-1. J Biol Chem 278:18817–18823. doi:10.1074/jbc.M300175200 CrossRefPubMedGoogle Scholar
  31. Wang W, Stukenberg PT, Brautigan DL (2008) Phosphatase inhibitor-2 balances protein phosphatase 1 and aurora B kinase for chromosome segregation and cytokinesis in human retinal epithelial cells. Mol Biol Cell 19:4852–4862. doi:10.1091/mbc.E08-05-0460 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Weiss LM, Dubey JP (2009) Toxoplasmosis: a history of clinical observations. Int J Parasitol 39:895–901. doi:10.1016/j.ijpara.2009.02.004 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d’Infection et d’Immunité de LilleLilleFrance

Personalised recommendations