Advertisement

Parasitology Research

, Volume 116, Issue 7, pp 1989–1999 | Cite as

Morphological and molecular evidence for a new species of Pseudanisakis Layman & Borovkova, 1926 (Nematoda: Ascaridida), parasitizing Rajiformes in southern Southwest Atlantic waters

  • Manuel M. Irigoitia
  • Paola E. Braicovich
  • Marisa D. Farber
  • Juan T. Timi
Original Paper

Abstract

Pseudanisakis argentinensis n. sp. is proposed to accommodate parasitic nematodes found in six skate species (Rajidae and Arhynchobatidae) examined from southern Southwest Atlantic waters. The new species differs from its congeners by the following combination of characters: a cupola on each lip, males with 8–12 pairs of precloacal genital papillae, a larger size for both males and females, a greater length-to-breadth ratio of the ventriculus and the presence of a small knob on the tip of the tail. Allometric growth was observed for several morphometric features; however, the slopes of the allometric relationships across host species exhibited non-significant differences and were considered as a strong evidence for conspecificity. Congruent results were obtained after the genetic characterization of the mitochondrial cytochrome c oxidase subunit 1 gene of worms obtained from different skate species, whose values of genetic divergence (1.3) lay within the range of intraspecific variation. Previous records of specimens referred to as Pseudanisakis tricupola in skates from South American waters are regarded as conspecific with P. argentinensis n. sp.

Keywords

Pseudanisakis Nematoda Systematics Allometric growth Psammobatis Sympterygia Bathyraja Atlantoraja Amblyraja Argentine Sea 

Notes

Acknowledgements

Thanks are extended to the Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP) and the Industrias El Corsario A.A., Mar del Plata, for providing fish samples, and to Dr. Santiago Barbini (IIMyC), Dr. Lorena Scenna (IIMyC) and Dr. Daniel Figueroa (UNMdP) for helping in the identification of skates and providing literature on chondrichthyans. Special thanks are due to the two anonymous reviewers for their valuable comments that helped to improve this article. Financial support was provided by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (PIP No. 112-201501-00973), the Fondo para la Investigación Científica y Tecnológica (PICT 2015 No. 2013) and the Universidad Nacional de Mar del Plata (EXA 869/16). This work is part of the Doctoral Thesis of M.M.I., carried out in the Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y Naturales.

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi: 10.1016/S0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  2. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, PlymouthGoogle Scholar
  3. Barbini SA, Lucifora LO (2012) Feeding habits of a large endangered skate from the south-west Atlantic: the spotback skate, Atlantoraja castelnaui. Mar Freshw Res 63:180–188CrossRefGoogle Scholar
  4. Belleggia M, Scenna LB, Barbini SA, Figueroa DE, Díaz De Astarloa JM (2014) The diets of four Bathyraja skates (Elasmobranchii, Arhynchobatidae) from the Southwest Atlantic. Cybium 38:314–318Google Scholar
  5. Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583CrossRefPubMedGoogle Scholar
  6. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  7. Cousseau MB, Perrotta RG (2013) Peces marinos de Argentina: biología, distribución, pesca. Instituto Nacional de Investigación y Desarrollo Pesquero INIDEP, Mar del PlataGoogle Scholar
  8. Cousseau MB, Figueroa DE, Díaz de Astarloa JM, Mabragaña E, Lucifora LO (2007) Rayas, chuchos y otros batoideos del Atlántico Sudoccidental (34°S-55°S). Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del PlataGoogle Scholar
  9. Díaz J, Villanova GV, Brancolini F, del Pazo F, Posner VM, Grimberg A, Arranz SE (2016) First DNA barcode reference library for the identification of South American freshwater fish from the lower Paraná river. PLoS One 11:e0157419. doi: 10.1371/journal.pone.0157419 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Estalles ML, Perier MR, Di Giácomo EE (2016) Trophic ecology of the smallnose fanskate Sympterygia bonapartii in the San Matías Gulf, northern Patagonia, Argentina. Ichthyol Res 63:207–217CrossRefGoogle Scholar
  11. Fernández J, Villalba C (1985) Proleptus carvajali n. sp. (Nematoda: Spiruroidea), new records and systematic list of the parasitic nematodes from fishes in Chile. Rev Chil Hist Nat 58:109–120Google Scholar
  12. Figueroa DE, Barbini S, Scenna L, Bellegia M, Delpiani GE, Spath C (2013) El endemismo en las rayas de la zona común de pesca Argentino–Uruguaya. Fr Mar 23:95–104Google Scholar
  13. Filatov DA (2002) ProSeq: a software for preparation and evolutionary analysis of DNA sequence data sets. Mol Ecol Notes 2:621–624. doi: 10.1046/j.1471-8286.2002.00313.x CrossRefGoogle Scholar
  14. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  15. Gibbons LM (2010) Keys to the nematode parasites of vertebrates. Supplementary volume. CAB International, WallingfordGoogle Scholar
  16. Gibson DI (1973) The genus Pseudanisakis Layman & Borovkova, 1926 (Nematoda: Ascaridida). J Nat Hist 7:319–340CrossRefGoogle Scholar
  17. Gibson DI (1983) The systematics of ascaridoid nematodes—a current assessment. In: Stone AR, Platt HM, Khalil LF (eds) Concepts in nematode systematics. (Systematics association spec vol 22). Academic Press, London, pp 321–338Google Scholar
  18. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  19. Hartwich G (1974) Keys to genera of the Ascaridoidea. In: Anderson RC, Chabaud AG, Wilmott S (eds) CIH Keys to the nematode parasites of vertebrates, no. 2. Commonwealth Agricultural Bureaux, Farnham Royal 15 ppGoogle Scholar
  20. Hebert PD, Cywinska A, Ball SL, de Waard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B Biol Sci 270:313–321. doi: 10.1098/rspb.2002.2218 CrossRefGoogle Scholar
  21. Hebert PD, Ratnasingham S, de Waard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond Ser B Biol Sci 270(Suppl 1):S96–S99. doi: 10.1098/rsbl.2003.0025 CrossRefGoogle Scholar
  22. Kapli P, Lutteropp S, Zhang J, Kobert K, Pavlidis P, Stamatakis A, Flouri T (2017) Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics. doi: 10.1093/bioinformatics/btx025
  23. Kekkonen M, Mutanen M, Kaila L, Nieminen M, Hebert PDN (2015) Delineating species with DNA barcodes: a case of taxon dependent method performance in moths. PLoS One 10:e0122481. doi: 10.1371/journal.pone.0122481 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  25. Layman EM, Borovkova MM (1926) [Parasitic worms of the skate (Raja radiata Don.) from material of the 15th Federal Helminthological Expedition.] Raboty Parazitologicheskoi Laboratorii. Moskovskii Gosudarstvennyi Universitet, pp. 9–26. (In Russian)Google Scholar
  26. Li L, Gibson DI, Liu YY, Zhang LP (2012) Morphological and molecular study of the poorly known species Pseudanisakis rajae (Yamaguti, 1941) (Nematoda: Acanthocheilidae) from elasmobranchs in the Yellow Sea and Taiwan Strait off the coast of China. Syst Parasitol 81:115–123. doi: 10.1007/s11230-011-9331-x CrossRefPubMedGoogle Scholar
  27. Mattiucci S, Nascetti G (2008) Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes. Adv Parasitol 66:47–148. doi: 10.1016/S0065-308X(08)00202-9 CrossRefPubMedGoogle Scholar
  28. Mattiucci S, Paoletti M, Webb SC, Sardella N, Timi JT, Berland B, Nascetti G (2008) Genetic relationships among species of Contracaecum Railliet & Henry, 1912 and Phocascaris Höst, 1932 (Nematoda: Anisakidae) from pinnipeds inferred from mitochondrial cox2 sequences, and congruence with allozyme data. Parasite 15:408–419. doi: 10.1051/parasite/2008153408 CrossRefPubMedGoogle Scholar
  29. Mozgovoi AA (1950) Notes on the foundation of the genus Pseudanisakis (Layman & Borovkova, 1926) nov. gen. Trudy Gel’minti Labi 4:17–24 In RussianGoogle Scholar
  30. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  31. Petter AJ, Paradiznik V, Radujkovic BM, Cassone J (1991) Redescription d’Acanthocheilus rotundatus (Ascaridoidea: Nematoda), parasite de requins (Pleurotremata: Selachii), considération sur les affinités du genre Acanthocheilus et conclusions taxonomiques. Ann Parasit Hum Comp 66:187–194CrossRefGoogle Scholar
  32. Poulin R (2009) Interspecific allometry of morphological traits among trematode parasites: selection and constraints. Biol J Linn Soc 96:533–540CrossRefGoogle Scholar
  33. Previšić A, Gelemanović A, Urbanič G, Ternjej I (2016) Cryptic diversity in the Western Balkan endemic copepod: four species in one? Mol Phylogenet Evol 100:124–134. doi: 10.1016/j.ympev.2016.04.010 CrossRefPubMedGoogle Scholar
  34. Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, automatic barcode gap discovery for primary species delimitation. Mol Ecol 21:1864–1877. doi: 10.1111/j.1365-294X.2011.05239.x CrossRefPubMedGoogle Scholar
  35. Reiczigel J (2003) Confidence intervals for the binomial parameter: some new considerations. Stat Med 22:611–621. doi: 10.1002/sim.1320 CrossRefPubMedGoogle Scholar
  36. Rózsa L, Reiczigel J, Majoros G (2000) Quantifying parasites in samples of hosts. J Parasitol 86:228–232. doi: 10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2 CrossRefPubMedGoogle Scholar
  37. Santos CP, Lent H, Gibson DI (2004) A new species of Pseudanisakis Layman & Borovkova, 1926 (Nematoda: Ascaridida) from Rioraja agassizii and Psammobatis extenta (Rajidae) in Brazilian southwestern Atlantic waters. Syst Parasitol 57:229–235. doi: 10.1023/B:SYPA.0000019086.44939.17 CrossRefPubMedGoogle Scholar
  38. Sprent P (1969) Models in regression and related topics. Methuen, LondonGoogle Scholar
  39. Sprent JFA (1983) Observations on the systematics of ascaridoid nematodes. In: Stone AR, Platt HM, Khalil LF (eds) Concepts in nematode systematics. (Systematics association spec vol 22). Academic Press, London, pp 303–319Google Scholar
  40. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tang CQ, Humphreys AM, Fontaneto D, Barraclough TG, Paradis E (2014) Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data. Methods Ecol Evol 5:1086–1094. doi: 10.1111/2041-210X.12246 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tanzola RD, Guagliardo SE, Brizzola SM, Arias MV, Botté SE (1998) Parasite assemblage of Sympterygia bonapartei (Pisces: Rajidae), an endemic skate of the southwest Atlantic. Helminthologia 35:123–129Google Scholar
  43. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  44. Valentini A, Mattiucci S, Bondanelli P, Webb SC, Mignucci-Giannone AA, Colom-Llavina MM, Nascetti G (2006) Genetic relationships among Anisakis species (Nematoda: Anisakidae) inferred from mitochondrial cox2 sequences, and comparison with allozyme data. J Parasitol 92:156–166. doi: 10.1645/GE-3504.1 CrossRefPubMedGoogle Scholar
  45. Viney ME (2013) Life-history plasticity and responses to host defense. In: Kennedy MW, Harnett W (eds) Parasitic nematodes: molecular biology. Biochemistry and Immunology. CAB International, UK, pp 15–29CrossRefGoogle Scholar
  46. Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291. doi: 10.1017/S1464793106007007 CrossRefPubMedGoogle Scholar
  47. Warton DI, Duursma RA, Falster DS, Taskinen S (2012) smatr 3–an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257–259. doi: 10.1111/j.2041-210X.2011.00153.x CrossRefGoogle Scholar
  48. Yamaguti S (1941) Studies on the helminth fauna of Japan, part 33. Nematodes of fishes. II. Jap J Zool 9:343–396Google Scholar
  49. Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876. doi: 10.1093/bioinformatics/btt499 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Manuel M. Irigoitia
    • 1
  • Paola E. Braicovich
    • 1
  • Marisa D. Farber
    • 2
  • Juan T. Timi
    • 1
  1. 1.Laboratorio de Ictioparasitología, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del Plata (UNMdP), Instituto de Investigaciones Marinas y Costeras (IIMyC)Mar del PlataArgentina
  2. 2.Instituto de BiotecnologíaInstituto Nacional de Tecnología Agropecuaria (INTA)HurlinghamArgentina

Personalised recommendations