Parasitology Research

, Volume 116, Issue 7, pp 1793–1799 | Cite as

Toxoplasma gondii and schizophrenia: a review of published RCTs

Review

Abstract

Over the last 60 years, accumulating evidence has suggested that acute, chronic, and maternal Toxoplasma gondii infections predispose to schizophrenia. More recent evidence suggests that chronically infected patients with schizophrenia present with more severe disease. After acute infection, parasites form walled cysts in the brain, leading to lifelong chronic infection and drug resistance to commonly used antiparasitics. Chronic infection is the most studied and closely linked with development and severity of schizophrenia. There are currently four published randomized controlled trials evaluating antiparasitic drugs, specifically azithromycin, trimethoprim, artemisinin, and artemether, in patients with schizophrenia. No trials have demonstrated a change in psychopathology with adjunctive treatment. Published trials have either selected drugs without evidence against chronic infection or used them at doses too low to reduce brain cyst burden. Furthermore, trials have failed to achieve sufficient power or account for confounders such as previous antipsychotic treatment, sex, age, or rhesus status on antiparasitic effect. There are currently no ongoing trials of anti-Toxoplasma therapy in schizophrenia despite ample evidence to justify further testing.

Keywords

Toxoplasma Schizophrenia Treatment Chronic 

References

  1. Amminger GP, McGorry PD, Berger GE et al (2007) Antibodies to infectious agents in individuals at ultrahigh risk for psychosis. Biol Psychiatry 61:1215–1217. doi:10.1016/j.biopsych.2006.09.034
  2. Araujo FG, Remington JS (1974) Effect of clindamycin on acute and chronic toxoplasmosis in mice. Antimicrob Agents Chemother 5:647–651. doi:10.1128/AAC.5.6.647 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Araujo FG, Shepard RM, Remington JS (1991) In vivo activity of the macrolide antibiotics azithromycin, roxithromycin and spiramycin against Toxoplasma gondii. Eur J Clin Microbiol Infect Dis 10:519–524. doi:10.1007/BF01963942 CrossRefPubMedGoogle Scholar
  4. Buentello E (1958) Preliminary observations on the relationship between toxoplasmosis, lysergic acid and schizophrenia. Gac Med Mex 88:693–710PubMedGoogle Scholar
  5. Çelik T, Kartalci Ş, Aytaş Ö et al (2015) Association between latent toxoplasmosis and clinical course of schizophrenia—continuous course of the disease is characteristic for Toxoplasma gondii-infected patients. Folia Parasitol 62:15. doi:10.14411/fp.2015.015 Google Scholar
  6. Chang HR, Arsenijevic D, Comte R et al (1994) Activity of epiroprim (Ro 11-8958), a dihydrofolate reductase inhibitor, alone and in combination with dapsone against Toxoplasma gondii. Antimicrob Agents Chemother 38:1803–1807. doi:10.1128/AAC.38.8.1803 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chang HR, Comte R, Piguet PF, Pechère JC (1991) Activity of minocycline against Toxoplasma gondii infection in mice. J Antimicrob Chemother 27:639–645. doi:10.1093/jac/27.5.639 CrossRefPubMedGoogle Scholar
  8. Chew WK, Segarra I, Ambu S, Mak JW (2012) Significant reduction of brain cysts caused by Toxoplasma gondii after treatment with spiramycin coadministered with metronidazole in a mouse model of chronic toxoplasmosis. Antimicrob Agents Chemother 56:1762–1768. doi:10.1128/AAC.05183-11 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dickerson FB, Stallings CR, Boronow JJ et al (2009) A double-blind trial of adjunctive azithromycin in individuals with schizophrenia who are seropositive for Toxoplasma gondii. Schizophr Res 112:198–199. doi:10.1016/j.schres.2009.05.005 CrossRefPubMedGoogle Scholar
  10. Dickerson F, Stallings CR, Vaughan C et al (2011) Artemisinin reduces the level of antibodies to gliadin in schizophrenia. Schizophr Res 129:196–200. doi:10.1016/j.schres.2011.04.010 CrossRefPubMedGoogle Scholar
  11. Djurković-Djaković O, Milenković V, Nikolić A et al (2002) Efficacy of atovaquone combined with clindamycin against murine infection with a cystogenic (Me49) strain of Toxoplasma gondii. J Antimicrob Chemother 50:981–987. doi:10.1093/jac/dkf251 CrossRefPubMedGoogle Scholar
  12. Dumas JL, Chang R, Mermillod B et al (1994) Evaluation of the efficacy of prolonged administration of azithromycin in a murine model of chronic toxoplasmosis. J Antimicrob Chemother 34:111–118. doi:10.1093/jac/34.1.111 CrossRefPubMedGoogle Scholar
  13. Dumas JL, Pizzolato G, Pechère JC (1999) Evaluation of trimethoprim and sulphamethoxazole as monotherapy or in combination in the management of toxoplasmosis in murine models. Int J Antimicrob Agents 13:35–39. doi:10.1016/S0924-8579(99)00073-4 CrossRefPubMedGoogle Scholar
  14. Dunay IR, Chan WC, Haynes RK, Sibley LD (2009) Artemisone and artemiside control acute and reactivated toxoplasmosis in a murine model. Antimicrob Agents Chemother 53:4450–4456. doi:10.1128/AAC.00502-09 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Eissa MM, Barakat AMA, Amer EI, Younis LK (2015) Could miltefosine be used as a therapy for toxoplasmosis? Exp Parasitol 157:12–22. doi:10.1016/j.exppara.2015.06.005 CrossRefPubMedGoogle Scholar
  16. Elsheikha HM, Büsselberg D, Zhu XQ (2016) The known and missing links between Toxoplasma gondii and schizophrenia. Metab Brain Dis 31:749–759. doi:10.1007/s11011-016-9822-1 CrossRefPubMedGoogle Scholar
  17. Flegr J (2013) Influence of latent Toxoplasma infection on human personality, physiology and morphology: pros and cons of the Toxoplasma–human model in studying the manipulation hypothesis. J Exp Biol 216:127–133. doi:10.1242/jeb.073635 CrossRefPubMedGoogle Scholar
  18. Flegr J (2015) Schizophrenia and Toxoplasma gondii: an undervalued association? Expert Rev Anti-Infect Ther 13:817–820. doi:10.1586/14787210.2015.1051033 CrossRefPubMedGoogle Scholar
  19. Fond G, Boyer L, Gaman A et al (2015) Treatment with anti-toxoplasmic activity (TATA) for Toxoplasma positive patients with bipolar disorders or schizophrenia: a cross-sectional study. J Psychiatr Res 63:58–64. doi:10.1016/j.jpsychires.2015.02.011 CrossRefPubMedGoogle Scholar
  20. Fond G, Macgregor A, Tamouza R et al (2014) Comparative analysis of anti-toxoplasmic activity of antipsychotic drugs and valproate. Eur Arch Psychiatry Clin Neurosci 264:179–183. doi:10.1007/s00406-013-0413-4 CrossRefPubMedGoogle Scholar
  21. Fujita Y, Ishima T, Kunitachi S et al (2008) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the antibiotic drug minocycline. Prog Neuro-Psychopharmacol Biol Psychiatry 32:336–339. doi:10.1016/j.pnpbp.2007.08.031 CrossRefGoogle Scholar
  22. Goodwin DG, Strobl JS, Lindsay DS (2011) Evaluation of five antischizophrenic agents against Toxoplasma gondii in human cell cultures. J Parasitol 97:148–151. doi:10.1645/GE-2536.1 CrossRefPubMedGoogle Scholar
  23. Hencken CP, Jones-Brando L, Bordón C et al (2010) Thiazole, oxadiazole, and carboxamide derivatives of artemisinin are highly selective and potent inhibitors of Toxoplasma gondii. J Med Chem 53:3594. doi:10.1021/jm901857d CrossRefPubMedPubMedCentralGoogle Scholar
  24. Holub D, Flegr J, Dragomirecká E et al (2013) Differences in onset of disease and severity of psychopathology between toxoplasmosis-related and toxoplasmosis-unrelated schizophrenia. Acta Psychiatr Scand 127:227–238. doi:10.1111/acps.12031 CrossRefPubMedGoogle Scholar
  25. Holub D, Motlová L, Dragomirecká E et al (2011) Possible protective function of Rh factor in schizophrenia. Psychiatrie 15:37–42Google Scholar
  26. Horacek J, Flegr J, Tintera J et al (2012) Latent toxoplasmosis reduces gray matter density in schizophrenia but not in controls: voxel-based-morphometry (VBM) study. World J Biol Psychiatry 13:501–509. doi:10.3109/15622975.2011.573809 CrossRefPubMedGoogle Scholar
  27. Huskinson-Mark J, Araujo FG, Remington JS (1991) Evaluation of the effect of drugs on the cyst form of Toxoplasma gondii. J Infect Dis 164:170–171. doi:10.1093/infdis/164.1.170 CrossRefPubMedGoogle Scholar
  28. Jones-Brando L, Torrey EF, Yolken R (2003) Drugs used in the treatment of schizophrenia and bipolar disorder inhibit the replication of Toxoplasma gondii. Schizophr Res 62:237–244. doi:10.1016/S0920-9964(02)00357-2 CrossRefPubMedGoogle Scholar
  29. Lainson R (1958) Observations on the development and nature of pseudocysts and cysts of Toxoplasma gondii. Trans R Soc Trop Med Hyg 52:396–407. doi:10.1016/0035-9203(58)90123-8 CrossRefPubMedGoogle Scholar
  30. Leucht S, Kane JM, Kissling W et al (2005) What does the PANSS mean? Schizophr Res 79:231–238. doi:10.1016/j.schres.2005.04.008 CrossRefPubMedGoogle Scholar
  31. Lindová J, Kuběna AA, Šturcová H et al (2013) Pattern of money allocation in experimental games supports the stress hypothesis of gender differences in Toxoplasma gondii-induced behavioural changes. Folia Parasitol 57:136–142. doi:10.14411/fp.2010.017 CrossRefGoogle Scholar
  32. Lindová J, Novotná M, Havlícek J et al (2006) Gender differences in behavioural changes induced by latent toxoplasmosis. Int J Parasitol 36:1485–1492. doi:10.1016/j.ijpara.2006.07.008 CrossRefPubMedGoogle Scholar
  33. Loo CSN, Lam NSK, Yu D et al (2017) Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacol Res 117:192–217. doi:10.1016/j.phrs.2016.11.012 CrossRefPubMedGoogle Scholar
  34. Mahmoud SS (2006) Azithromycin macrolids with a potent activity on chronic experimental toxopiasmosis. Iraqi J Pharm 6:1–5Google Scholar
  35. Monroe JM, Buckley PF, Miller BJ (2015) Meta-analysis of anti-Toxoplasma gondii IgM antibodies in acute psychosis. Schizophr Bull 41:989–998. doi:10.1093/schbul/sbu159 CrossRefPubMedGoogle Scholar
  36. Munić V, Kelnerić Ž, Mikac L, Eraković Haber V (2010) Differences in assessment of macrolide interaction with human MDR1 (ABCB1, P-gp) using rhodamine-123 efflux, ATPase activity and cellular accumulation assays. Eur J Pharm Sci 41:86–95. doi:10.1016/j.ejps.2010.05.016 CrossRefPubMedGoogle Scholar
  37. Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7:27–31. doi:10.4103/0976-0105.177703 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Neville AJ, Zach SJ, Wang X et al (2015) Clinically available medicines demonstrating anti-Toxoplasma activity. Antimicrob Agents Chemother 59:7161–7169. doi:10.1128/AAC.02009-15 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nguyen B, Stadtsbaeder S (1983) Comparative effects of cotrimoxazole (trimethoprim-sulphamethoxazole), pyrimethamine-sulphadiazine and spiramycin during avirulent infection with Toxoplasma gondii (Beverley strain) in mice. Br J Pharmacol 79:923–928. doi:10.1111/j.1476-5381.1983.tb10537.x CrossRefPubMedPubMedCentralGoogle Scholar
  40. Oya K, Kishi T, Iwata N (2014) Efficacy and tolerability of minocycline augmentation therapy in schizophrenia: a systematic review and meta-analysis of randomized controlled trials. Hum Psychopharmacol 29:483–491. doi:10.1002/hup.2426 CrossRefPubMedGoogle Scholar
  41. Panel on Opportunistic Infections in HIV-Infected Adults and Adolescents (2017) Guidelines for the prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. https://aidsinfo.nih.gov/contentfiles/lvguidelines/adult_oi.pdf. Accessed 18 Feb 2017
  42. Pappas G, Roussos N, Falagas ME (2009) Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int J Parasitol 39:1385–1394. doi:10.1016/j.ijpara.2009.04.003 CrossRefPubMedGoogle Scholar
  43. Roberts CW, Walker W, Alexander J (2001) Sex-associated hormones and immunity to protozoan parasites. Clin Microbiol Rev 14:476–488. doi:10.1128/CMR.14.3.476-488.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sarciron ME, Lawton P, Saccharin C et al (1997) Effects of 2′,3′-dideoxyinosine on Toxoplasma gondii cysts in mice. Antimicrob Agents Chemother 41:1531–1536PubMedPubMedCentralGoogle Scholar
  45. Schultz TL, Hencken CP, Woodard LE et al (2014) A thiazole derivative of artemisinin moderately reduces Toxoplasma gondii cyst burden in infected mice. J Parasitol 100:516–521. doi:10.1645/13-451.1 CrossRefPubMedGoogle Scholar
  46. Sharif M, Sarvi S, Pagheh AS et al (2016) The efficacy of herbal medicines against Toxoplasma gondii during the last 3 decades: a systematic review. Can J Physiol Pharmacol 94:1237–1248. doi:10.1139/cjpp-2016-0039 CrossRefPubMedGoogle Scholar
  47. Shibre T, Alem A, Abdulahi A et al (2010) Trimethoprim as adjuvant treatment in schizophrenia: a double-blind, randomized, placebo-controlled clinical trial. Schizophr Bull 36:846–851. doi:10.1093/schbul/sbn191 CrossRefPubMedGoogle Scholar
  48. Sugie M, Asakura E, Zhao YL et al (2004) Possible involvement of the drug transporters P glycoprotein and multidrug resistance-associated protein Mrp2 in disposition of azithromycin. Antimicrob Agents Chemother 48:809–814. doi:10.1128/AAC.48.3.809-814.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sutterland AL, Fond G, Kuin A et al (2015) Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: systematic review and meta-analysis. Acta Psychiatr Scand 132:161–179. doi:10.1111/acps.12423 CrossRefPubMedGoogle Scholar
  50. Vos T, Allen C, Arora M et al (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1545–1602. doi:10.1016/S0140-6736(16)31678-6 CrossRefGoogle Scholar
  51. Wang HL, Wang GH, Li QW et al (2006) Prevalence of Toxoplasma infection in first-episode schizophrenia and comparison between Toxoplasma-seropositive and Toxoplasma-seronegative schizophrenia. Acta Psychiatr Scand 114:40–48. doi:10.1111/j.1600-0447.2006.00780.x
  52. Wang HL, Xiang YT, Li QY et al (2014) The effect of artemether on psychotic symptoms and cognitive impairment in first-episode, antipsychotic drug-naive persons with schizophrenia seropositive to Toxoplasma gondii. J Psychiatr Res 53:119–124. doi:10.1016/j.jpsychires.2014.02.016 CrossRefPubMedGoogle Scholar
  53. Webster JP, Lamberton PHL, Donnelly CA, Torrey EF (2006) Parasites as causative agents of human affective disorders? The impact of anti-psychotic, mood-stabilizer and anti-parasite medication on Toxoplasma gondii’s ability to alter host behaviour. Proc R Soc Lond B Biol Sci 273:1023–1030. doi:10.1098/rspb.2005.3413 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Michael G. DeGroote School of MedicineMcMaster UniversityHamiltonCanada

Personalised recommendations