Parasitology Research

, Volume 116, Issue 6, pp 1773–1779 | Cite as

Behavioural modification of personality traits: testing the effect of a trematode on nymphs of the red damselfly Xanthocnemis zealandica

  • Antoine Filion
  • Clément Lagrue
  • Bronwen Presswell
  • Robert Poulin
Original Paper

Abstract

Research on animal personality is increasingly demonstrating that individuals in a population are characterised by distinct sets of behavioural traits that show consistency over time and across different situations. Parasites are known to alter the behaviour of their hosts, although their role in shaping host personality remains little studied. Here, we test the effect of trematode infection on two traits of their host’s personality, activity and boldness, in nymphs of the red damselfly Xanthocnemis zealandica. Genetic analyses indicate that the undescribed trematode species falls within the superfamily Microphalloidea. Results of laboratory behavioural tests indicate that the two behavioural traits are related to each other: bolder individuals also show higher levels of spontaneous activity than shy ones. However, parasite infection had no effect on either of these behaviours or on their repeatability over three separate testing sessions. Although our findings suggest that this trematode does not influence personality traits of the damselfly host, it remains possible that other standard personality traits not tested here (exploratory tendency, aggressiveness) are affected by infection.

Keywords

Behavioural modification Trematodes Repeatability Host-parasite interactions Animal personality 

References

  1. Bell AM, Hankison SJ, Laskowski KL (2009) The repeatability of behaviour: a meta-analysis. Anim Behav 77:771–783CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bethel WM, Holmes JC (1974) Correlation of development of altered evasive behavior in Gammarus lacustris (Amphipoda) harboring cystacanths of Polymorphus paradoxus (Acanthocephala) with the infectivity to the definitive host. J Parasitol 60:272–274CrossRefPubMedGoogle Scholar
  3. Blasco-Costa I, Balbuena JA, Raga JA, Kostadinova A, Olson PD (2010) Molecules and morphology reveal cryptic variation among digeneans infecting sympatric mullets in the Mediterranean. Parasitology 137:287–302CrossRefPubMedGoogle Scholar
  4. Brodin T (2008) Behavioral syndrome over the boundaries of life—carryover from larvae to adult damselfly. Behav Ecol 20:30–37CrossRefGoogle Scholar
  5. Brodin T, Johansson F (2004) Conflicting selection pressures on the growth/predation risk trade-off in a damselfly. Ecology 85:2927–2932CrossRefGoogle Scholar
  6. Coats J, Poulin R, Nakagawa S (2010) The consequences of parasitic infections for host behavioural correlations and repeatability. Behaviour 147:367–382CrossRefGoogle Scholar
  7. Cribb TH, Bray RA, Olson PD, Timothy D, Littlewood J (2003) Life cycle evolution in the Digenea: a new perspective from phylogeny. Adv Parasitol 54:197–254CrossRefPubMedGoogle Scholar
  8. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95.98NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  9. Hammond-Tooke CA, Nakagawa S, Poulin R (2012) Parasitism and behavioural syndromes in the fish Gobiomorphus cotidianus. Behaviour 149:601–622CrossRefGoogle Scholar
  10. Harper JT, Saunders GW (2001) The application of sequences of the ribosomal cistron to the systematics and classification of the Rhodophyta. Cahiers Biol Mar 42:25–38Google Scholar
  11. Helluy S (1983) Relations hôtes-parasites du trematode Microphallus papillorobustus (Rankin, 1940). II. Modifications du comportement des Gammarus hôtes intermédiaires et localisation des métacercaires. Ann Parasitol Hum Comp 58:1–17PubMedGoogle Scholar
  12. Lafferty KD (1999) The evolution of trophic transmission. Parasitol Today 15:111–115CrossRefPubMedGoogle Scholar
  13. Leaphart JC, Zelmer DA (2017) Wrecking the curve: altered functional response of Tetragoneuria (Odonata: Corduliidae) naiads infected with metacercariae of Haematoloechus floedae. J Parasitol 103:147–151CrossRefPubMedGoogle Scholar
  14. Lucius R, Romig T, Frank W (1980) Camponotus compressiscapus Andre (Hymenoptera, Formicidae), an experimental second intermediate host of Dicrocoelium hospes Looss, 1907 (Trematodes, Dicrocoeliidae). Z Parasitenk 63:271–275CrossRefPubMedGoogle Scholar
  15. McCurdy DG, Forbes MR, Boates JS (1999) Testing alternative hypotheses for variation in amphipod behaviour and life history in relation to parasitism. Int J Parasitol 29:1001–1009CrossRefPubMedGoogle Scholar
  16. Moore J (1984) Altered behavioral responses in intermediate hosts—an Acanthocephalan parasite strategy. Am Nat 123:572–577CrossRefGoogle Scholar
  17. Moore J (2002) Parasites and the behaviour of animals. Oxford University Press, OxfordGoogle Scholar
  18. Olson P, Cribb T, Tkach V, Bray R, Littlewood D (2003) Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int J Parasitol 33:733–755CrossRefPubMedGoogle Scholar
  19. Poulin R (1994) Meta-analysis of parasite-induced behavioural changes. Anim Behav 48:137–146CrossRefGoogle Scholar
  20. Poulin R (1995) “Adaptative” changes in the behaviour of parasitized animals: a critical review. Int J Parasitol 25:1371–1383CrossRefPubMedGoogle Scholar
  21. Poulin R (2010) Parasite manipulation of host behavior: an update and frequently asked questions. Adv Stud Behav 41:151–186CrossRefGoogle Scholar
  22. Poulin R (2013) Parasite manipulation of host personality and behavioural syndromes. J Exp Biol 216:18–26CrossRefPubMedGoogle Scholar
  23. Poulin R, Fredensborg BL, Hansen E, Leung TLF (2005) The true cost of host manipulation by parasites. Behav Proc 68:241–244CrossRefGoogle Scholar
  24. Presswell B, Blasco-Costa I, Kostadinova A (2014) Two new species of Maritrema Nicoll, 1907 (Digenea: Microphallidae) from New Zealand: morphological and molecular characterization. Parasitol Res 113:1641–1656CrossRefPubMedGoogle Scholar
  25. Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82:291–318CrossRefPubMedGoogle Scholar
  26. Robb T, Reid ML (1996) Parasite-induced changes in the behaviour of cestode-infected beetles: adaptation or simple pathology? Can J Zool 74:1268–1274CrossRefGoogle Scholar
  27. Sih A, Bell A, Johnson JC (2004) Behavioral syndrome: an ecological and evolutionary review. Trends Ecol Evol 19:372–378CrossRefPubMedGoogle Scholar
  28. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutional Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  29. Thomas F, Adamo S, Moore J (2005) Parasitic manipulation: where are we and where should we go? Behav Proc 68:185–199CrossRefGoogle Scholar
  30. Tkach V, Littlewood D, Olson PD, Kinsella JM, Swiderski Z (2003) Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). Syst Parasitol 56:1–15CrossRefPubMedGoogle Scholar
  31. Urdal K, Tierney JF, Jakobsen PJ (1995) The tapeworm Schistocephalus solidus alters the activity and response, but not the predation susceptibility of infected copepods. J Parasitol 81:330–333CrossRefPubMedGoogle Scholar
  32. Webber RA, Rau ME, Lewis DJ (1987) The effects of Plagiorchis noblei (Trematoda: Plagiorchiidae) metacercariae on the behavior of Aedes aegypti larvae. Can J Zool 65:1340–1342CrossRefGoogle Scholar
  33. Werle E, Schneider C, Renner M, Völker M, Fiehn W (1994) Convenient single-step, one tube purification of PCR products for direct sequencing. Nucl Acids Res 22:4354–4355CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wolak ME, Fairbairn DJ, Paulsen YR (2012) Guideline for estimating repeatability. Methods Ecol Evol 3:129–137CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Département des Sciences de l’environnementUniversité du Québec à Trois-RivièresTrois-RivièresCanada
  2. 2.Department of ZoologyUniversity of OtagoDunedinNew Zealand

Personalised recommendations