Parasitology Research

, Volume 116, Issue 6, pp 1603–1615 | Cite as

Nanomedicine advances in toxoplasmosis: diagnostic, treatment, and vaccine applications

  • João Paulo Assolini
  • Virginia Márcia Concato
  • Manoela Daiele Gonçalves
  • Amanda Cristina Machado Carloto
  • Ivete Conchon-Costa
  • Wander Rogério Pavanelli
  • Francine Nesello Melanda
  • Idessania Nazareth Costa
Review

Abstract

Toxoplasmosis is an infectious disease caused by the intracellular parasite Toxoplasma gondii that affects about one third of the world’s population. The diagnosis of this disease is carried out by parasite isolation and host antibodies detection. However, the diagnosis presents problems in regard to test sensitivity and specificity. Currently, the most effective T. gondii treatment is a combination of pyrimethamine and sulfadiazine, although both drugs are toxic to the host. In addition to the problems that compromise the effective diagnosis and treatment of toxoplasmosis, there are no reports or indications of any vaccine capable of fully protecting against this infection. Nanomaterials, smaller than 1000 nm, are currently being investigated as an alternative tool in the management of T. gondii infection. This article reviews how recent nanotechnology advances indicate the utility of nanomaterials in toxoplasmosis diagnosis, treatment, and vaccine development.

Keywords

Nanotechnology Nanoparticles Nanomedicine Toxoplasma gondii Infection 

References

  1. Al Nasr I, Ahmed F, Pullishery F, El-Ashram S, Ramaiah VV (2016) Toxoplasmosis and anti-toxoplasma effects of medicinal plant extracts—a mini-review. Asian Pac J Trop Med 9(8):730–734. doi:10.1016/j.apjtm.2016.06.012 CrossRefPubMedGoogle Scholar
  2. Anand N, Sehgal R, Kanwar RK, Dubey ML, Vasishta RK, Kanwar JR (2015) Oral administration of encapsulated bovine lactoferrin protein nanocapsules against intracellular parasite Toxoplasma gondii. Int J Nanomedicine 10:6355–6369. doi:10.2147/IJN.S85286 PubMedPubMedCentralGoogle Scholar
  3. Antczak M, Dzitko K, Długońska H (2016) Human toxoplasmosis—searching for novel chemotherapeutics. Biomed Pharmacother 82:677–684. doi:10.1016/j.biopha.2016.05.041 CrossRefPubMedGoogle Scholar
  4. Bivas-Benita M, Laloup M, Versteyhe S, Dewit J, de Braekeleer J, Jongert E, Borchard G (2003) Generation of Toxoplasma gondii GRA1 protein and DNA vaccine loaded chitosan particles: preparation, characterization, and preliminary in vivo studies. Int J Pharm 266(1–2):17–27. doi:10.1016/S0378-5173(03)00377-6 CrossRefPubMedGoogle Scholar
  5. Bottari NB, Baldissera MD, Tonin AA, Rech VC, Nishihira VS, Thomé GR, Schetinger MR, Morsch VM, Camillo G, Vogel FF, Tochetto C, Fighera R, Machado G, Stefani LM, da Silva AS (2015a) Sulfamethoxazole-trimethoprim associated with resveratrol for the treatment of toxoplasmosis in mice: influence on the activity of enzymes involved in brain neurotransmission. Microb Pathog 79:17–23. doi:10.1016/j.micpath.2015.01.001 CrossRefPubMedGoogle Scholar
  6. Bottari NB, Baldissera MD, Tonin AA, Rech VC, Nishihira VS, Thomé GR, Camillo G, Vogel FF, Duarte MM, Schetinger MR, Morsch VM, Tochetto C, Fighera R, da Silva AS (2015b) Effects of sulfamethoxazole-trimethoprim associated to resveratrol on its free form and complexed with 2-hydroxypropyl-β-cyclodextrin on cytokines levels of mice infected by Toxoplasma gondii. Microb Pathog 87:40–44. doi:10.1016/j.micpath.2015.07.013 CrossRefPubMedGoogle Scholar
  7. Bottari NB, Baldissera MD, Tonin AA, Rech VC, Alves CB, D’avila F, Thomé GR, Guarda NS, Moresco RN, Camillo G, Vogel FF, Luchese C, Schetinger MR, Morsch VM, Tochetto C, Fighera R, Nishihira VS, da Silva AS (2016) Synergistic effects of resveratrol (free and inclusion complex) and sulfamethoxazole-trimetropim treatment on pathology, oxidant/antioxidant status and behavior of mice infected with Toxoplasma gondii. Microb Pathog 95:166–174. doi:10.1016/j.micpath.2016.04.002 CrossRefPubMedGoogle Scholar
  8. Briones E, Colino CI, Lanao JM (2008) Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J Control Release 125(3):210–227. doi:10.1016/j.jconrel.2007.10.027 CrossRefPubMedGoogle Scholar
  9. Bülow R, Boothroyd JC (1991) Protection of mice from fatal Toxoplasma gondii infection by immunization with p30 antigen in liposomes. J Immunol 147(10):3496–3500PubMedGoogle Scholar
  10. Chahal JS, Khan OF, Cooper CL, Mcpartlan JS, Tsosie JK, Tilley LD, Sidik SM, Lourido S, Langer R, Bavari S, Ploegh HL, Anderson DG (2016) Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc Natl Acad Sci U S A 113(29):E4133–E4142. doi:10.1073/pnas.1600299113 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC (2010) Polymeric nanoparticles for drug delivery. Methods Mol Biol 624:163–175. doi:10.1007/978-1-60761-609-2_11 CrossRefPubMedGoogle Scholar
  12. Chen H, Chen G, Zheng H, Guo H (2003) Induction of immune responses in mice by vaccination with liposome-entrapped DNA complexes encoding Toxoplasma gondii SAG1 and ROP1 genes. Chin Med J 116(10):1561–1566PubMedGoogle Scholar
  13. Chen R, Lu SH, Tong QB, Lou D, Shi DY, Jia BB, Huang GP, Wang JF (2009) Protective effect of DNA-mediated immunization with liposome-encapsulated GRA4 against infection of Toxoplasma gondii. J Zhejiang Univ Sci B 10(7):512–521. doi:10.1631/jzus.B0820300 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dalencon F, Amjaud Y, Lafforgue C, Derouin F, Fessi H (1997) Atovaquone and rifabutine-loaded nanocapsules: formulation studies. Int J Pharm 153(1):127–130CrossRefGoogle Scholar
  15. de la Lastra CA, Villegas I (2007) Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc Trans 35(Pt 5):1156–1160. doi:10.1042/BST0351156 PubMedGoogle Scholar
  16. Dimier-Poisson I, Carpentier R, N’guyen TT, Dahmani F, Ducournau C, Betbeder D (2015) Porous nanoparticles as delivery system of complex antigens for an effective vaccine against acute and chronic Toxoplasma gondii infection. Biomaterials 50:164–175. doi:10.1016/j.biomaterials.2015.01.056 CrossRefPubMedGoogle Scholar
  17. Dunay IR, Heimesaat MM, Bushrab FN, Müller RH, Stocker H, Arasteh K, Kurowski M, Fitzner R, Borner K, Liesenfeld O (2004) Atovaquone maintenance therapy prevents reactivation of toxoplasmic encephalitis in a murine model of reactivated toxoplasmosis. Antimicrob Agents Chemother 48(12):4848–4854. doi:10.1128/AAC.48.12.4848-4854.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Durazo FA, Lassman C, Han SH, Saab S, Lee NP, Kawano M, Saggi B, Gordon S, Farmer DG, Yersiz H, Goldstein RL, Ghobrial M, Busuttil RW (2004) Fulminant liver failure due to usnic acid for weight loss. Am J Gastroenterol 99(5):950–952. doi:10.1111/j.1572-0241.2004.04165.x CrossRefPubMedGoogle Scholar
  19. Edmundson MC, Capeness M, Horsfall L (2014) Exploring the potential of metallic nanoparticles within synthetic biology. New Biotechnol 31(6):572–578. doi:10.1016/j.nbt.2014.03.004 CrossRefGoogle Scholar
  20. El Bissati K, Zhou Y, Dasgupta D, Cobb D, Dubey JP, Burkhard P, Lanar DE, Mcleod R (2014) Effectiveness of a novel immunogenic nanoparticle platform for Toxoplasma peptide vaccine in HLA transgenic mice. Vaccine 32(26):3243–3248. doi:10.1016/j.vaccine.2014.03.092 CrossRefPubMedGoogle Scholar
  21. Elsaid MM, Vitor RW, Frézard FJ, Martins MS (1999) Protection against toxoplasmosis in mice immunized with different antigens of Toxoplasma gondii incorporated into liposomes. Mem Inst Oswaldo Cruz 94(4):485–490. doi:10.1590/S0074-02761999000400010 CrossRefPubMedGoogle Scholar
  22. Elsaid MM, Martins MS, Frézard F, Braga EM, Vitor RW (2001) Vertical toxoplasmosis in a murine model. Protection after immunization with antigens of Toxoplasma gondii incorporated into liposomes. Mem Inst Oswaldo Cruz 96(1):99–104. doi:10.1590/S0074-02762001000100011 CrossRefPubMedGoogle Scholar
  23. El-Zawawy LA, El-Said D, Mossallam SF, Ramadan HS, Younis SS (2015a) Preventive prospective of triclosan and triclosan-liposomal nanoparticles against experimental infection with a cystogenic ME49 strain of toxoplasma gondii. Acta Trop 141(Pt A):103–111. doi:10.1016/j.actatropica.2014.09.020 CrossRefPubMedGoogle Scholar
  24. El-Zawawy LA, El-Said D, Mossallam SF, Ramadan HS, Younis SS (2015b) Triclosan and triclosan-loaded liposomal nanoparticles in the treatment of acute experimental toxoplasmosis. Exp Parasitol 149:54–64. doi:10.1016/j.exppara.2014.12.007 CrossRefPubMedGoogle Scholar
  25. Erba E, Pocar D, Rossi LM (1998) New esters of R-(+)-usnic acid. II farmaco 53(10):718–720. doi:10.1016/S0014-827X(98)00113-X CrossRefGoogle Scholar
  26. Gaafar MR, Mady RF, Diab RG, Shalaby TI (2014) Chitosan and silver nanoparticles: promising anti-toxoplasma agents. Exp Parasitol 143:30–38. doi:10.1016/j.exppara.2014.05.005 CrossRefPubMedGoogle Scholar
  27. Gutiérrez V, Seabra AB, Reguera RM, Khandare J, Calderón M (2016) New approaches from nanomedicine for treating leishmaniasis. Chem Soc Rev 45(1):152–168. doi:10.1039/c5cs00674k CrossRefPubMedGoogle Scholar
  28. He L, Ni L, Zhang X, Zhang C, Li R, Xu S (2015) Fluorescent detection of specific DNA sequences related to Toxoplasma gondii based on magnetic fluorescent nanoparticles Fe3O4/CdTe biosensor. Int J Biochem Res Rev 6(3):130. doi:10.9734/IJBCRR/2015/15254 CrossRefGoogle Scholar
  29. Hegazy S, Farid A, Rabae I, El-Amir A (2015) Novel IMB-ELISA assay for rapid diagnosis of human toxoplasmosis using SAG1 antigen. Jpn J Infect Dis 68(6):474–480. doi:10.7883/yoken.JJID.2014.444 CrossRefPubMedGoogle Scholar
  30. Hiszczyńska-Sawicka E, Akhtar M, Kay GW, Holec-Gasior L, Bickerstaffe R, Kur J, Stankiewicz M (2010a) The immune responses of sheep after DNA immunization with, Toxoplasma gondii MAG1 antigen—with and without co-expression of ovine interleukin 6. Vet Immunol Immunopathol 136(3–4):324–329. doi:10.1016/j.vetimm.2010.03.018 CrossRefPubMedGoogle Scholar
  31. Hiszczyńska-Sawicka E, Li H, Xu JB, Oledzka G, Kur J, Bickerstaffe R, Stankiewicz M (2010b) Comparison of immune response in sheep immunized with DNA vaccine encoding Toxoplasma gondii GRA7 antigen in different adjuvant formulations. Exp Parasitol 124(4):365–372. doi:10.1016/j.exppara.2009.11.015 CrossRefPubMedGoogle Scholar
  32. Hiszczyńska-Sawicka E, Olędzka G, Holec-Gąsior L, Li H, Xu JB, Sedcole R, Kur J, Bickerstaffe R, Stankiewicz M (2011) Evaluation of immune responses in sheep induced by DNA immunization with genes encoding GRA1, GRA4, GRA6 and GRA7 antigens of Toxoplasma gondii. Vet Parasitol 177(3–4):281–289. doi:10.1016/j.vetpar.2010.11.047 CrossRefPubMedGoogle Scholar
  33. Hiszczyńska-Sawicka E, Li H, Boyu Xu J, Akhtar M, Holec-Gasior L, Kur J, Bickerstaffe R, Stankiewicz M (2012) Induction of immune responses in sheep by vaccination with liposome-entrapped DNA complexes encoding Toxoplasma gondii MIC3 gene. Pol J Vet Sci 15(1):3–9. doi:10.2478/v10181-011-0107-7 PubMedGoogle Scholar
  34. Ingolfsdottir K (2002) Usnic acid. Phytochemistry 61(7):729–736. doi:10.1016/S0031-9422(02)00383-7 CrossRefPubMedGoogle Scholar
  35. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248. doi:10.1021/jp057170o CrossRefPubMedGoogle Scholar
  36. Jiang S, Hua E, Liang M, Liu B, Xie G (2013) A novel immunosensor for detecting Toxoplasma gondii-specific IgM based on goldmag nanoparticles and graphene sheets. Colloids Surf B Biointerfaces 101:481–486. doi:10.1016/j.colsurfb.2012.07.021 CrossRefPubMedGoogle Scholar
  37. Jiang W, Liu Y, Chen Y, Yang Q, Chun P, Yao K, Han X, Wang S, Yu S, Liu Y, Wang Q (2015) A novel dynamic flow immunochromatographic test (DFICT) using gold nanoparticles for the serological detection of Toxoplasma gondii infection in dogs and cats. Biosens Bioelectron 72:133–139. doi:10.1016/j.bios.2015.04.035 CrossRefPubMedGoogle Scholar
  38. Johnston MJ, Semple SC, Klimuk SK, Ansell S, Maurer N, Cullis PR (2007) Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin. Biochim Biophys Acta 1768(5):1121–1127. doi:10.1016/j.bbamem.2007.01.019 CrossRefPubMedGoogle Scholar
  39. Khalil NM, de Mattos AC, Carraro TC, Ludwig DB, Mainardes RM (2013) Nanotechnological strategies for the treatment of neglected diseases. Curr Pharm Des 19(41):7316–7329CrossRefPubMedGoogle Scholar
  40. Leyke S, Köhler-Sokolowska W, Paulke BR, Presber W (2012) Effects of nanoparticles in cells infected by Toxoplasma gondii. E-Polymers 12(1):647–663. doi:10.1515/epoly.2012.12.1.647 CrossRefGoogle Scholar
  41. Li X, Zhang Q, Hou P, Chen M, Hui W, Vermorken A, Luo Z, Li H, Li Q, Cui Y (2015) Gold magnetic nanoparticle conjugate-based lateral flow assay for the detection of IgM class antibodies related to TORCH infections. Int J Mol Med 36(5):1319–1326. doi:10.3892/ijmm.2015.2333 PubMedGoogle Scholar
  42. Liu Q, Singla LD, Zhou H (2012) Vaccines against Toxoplasma gondii: status, challenges and future directions. Hum Vaccin Immunother 8(9):1305–1308. doi:10.4161/hv.21006 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Machala L, Kodym P, Malý M, Geleneky M, Beran O, Jilich D (2015) Toxoplasmosis in immunocompromised patients. Epidemiologie, mikrobiologie, imunologie: casopis Spolecnosti pro epidemiologii a mikrobiologii Ceske lekarske spolecnosti JE Purkyne 64(2):59–65Google Scholar
  44. Mcleod R, Estes RG, Mack DG (1985) Effects of adjuvants and Toxoplasma gondii antigens on immune response and outcome of peroral T. gondii challenge. Trans R Soc Trop Med Hyg 79(6):800–804. doi:10.1016/0035-9203(85)90122-1 CrossRefPubMedGoogle Scholar
  45. Mcleod R, Muench SP, Rafferty JB, Kyle DE, Mui EJ, Kirisits MJ, Mack DG, Roberts CW, Samuel BU, Lyons RE, Dorris M, Milhous WK, Rice DW (2001) Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of Apicomplexan Fab I. Int J Parasitol 31(2):109–113. doi:10.1016/S0020-7519(01)00111-4 CrossRefPubMedGoogle Scholar
  46. Mellors JW, Debs RJ, Ryan JL (1989) Incorporation of recombinant gamma interferon into liposomes enhances its ability to induce peritoneal macrophage antitoxoplasma activity. Infect Immun 57(1):132–137PubMedPubMedCentralGoogle Scholar
  47. Miao H, Xu S, Yang Y, Zhang J, Dai Z, Sun B, Sun S, Zheng G, Feng T, Zi Y, Liang C, Luo H (2011) Toxoplasma gondii DNA sensor based on a novel Ni-magnetic sensing probe. Adv Mater Res 152-153:1510–1513. doi:10.4028/www.scientific.net/AMR.152-153.1510 CrossRefGoogle Scholar
  48. Miller CM, Boulter NR, Ikin RJ, Smith NC (2009) The immunobiology of the innate response to Toxoplasma gondii. Int J Parasitol 39(1):23–39. doi:10.1016/j.ijpara.2008.08.002 CrossRefPubMedGoogle Scholar
  49. Morais FB, Arantes TE, Muccioli C (2016) Current practices in ocular toxoplasmosis: a survey of Brazilian uveitis specialists. Ocul Immunol Inflamm 6:1–7. doi:10.1080/09273948.2016.1215471 CrossRefGoogle Scholar
  50. Mukherjee S, Ray S, Thakur RS (2009) Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci 71(4):349–358. doi:10.4103/0250-474X.57282 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Nabi H, Rashid I, Ahmad N, Durrani A, Akbar H, Islam S, Bajwa AA, Shehzad W, Ashraf K, Imran N (2017) Induction of specific humoral immune response in mice immunized with ROP18 nanospheres from Toxoplasma gondii. Parasitol Res 116(1):359–370. doi:10.1007/s00436-016-5298-5 CrossRefPubMedGoogle Scholar
  52. Oz HS (2014) Maternal and congenital toxoplasmosis, currently available and novel therapies in horizon. Front Microbiol 5:385. doi:10.3389/fmicb.2014.00385 PubMedPubMedCentralGoogle Scholar
  53. Petersen E (2007) Toxoplasmosis. Semin Fetal Neonatal Med 12(3):214–223. doi:10.1016/j.siny.2007.01.011 CrossRefPubMedGoogle Scholar
  54. Pissinate K, dos Santos Martins-Duarte É, Schaffazick SR, de Oliveira CP, Vommaro RC, Guterres SS, Pohlmann AR, de Souza W (2014) Pyrimethamine-loaded lipid-core nanocapsules to improve drug efficacy for the treatment of toxoplasmosis. Parasitol Res 113(2):555–564. doi:10.1007/s00436-013-3715-6 CrossRefPubMedGoogle Scholar
  55. Pissuwan D, Valenzuela SM, Miller CM, Cortie MB (2007) A golden bullet? Selective targeting of Toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods. Nano Lett 7(12):3808–3812. doi:10.1021/nl072377+ CrossRefPubMedGoogle Scholar
  56. Pissuwan D, Valenzuela SM, Miller CM, Killingsworth MC, Cortie MB (2009) Destruction and control of Toxoplasma gondii tachyzoites using gold nanosphere/antibody conjugates. Small 5(9):1030–1034. doi:10.1002/smll.200801018 CrossRefPubMedGoogle Scholar
  57. Prabhu RH, Patravale VB, Joshi MD (2015) Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomedicine 10:1001–1018. doi:10.2147/IJN.S56932 PubMedPubMedCentralGoogle Scholar
  58. Pramyothin P, Janthasoot W, Pongnimitprasert N, Phrukudom S, Ruangrungsi N (2004) Hepatotoxic effect of (+) usnic acid from Usnea siamensis Wainio in rats, isolated rat hepatocytes and isolated rat liver mitochondria. J Ethnopharmacol 90(2–3):381–387. doi:10.1016/j.jep.2003.10.019 CrossRefPubMedGoogle Scholar
  59. Prieto MJ, Bacigalupe D, Pardini O, Amalvy JI, Venturini C, Morilla MJ, Romero EL (2006) Nanomolar cationic dendrimeric sulfadiazine as potential antitoxoplasmic agent. Int J Pharm 326(1–2):160–168. doi:10.1016/j.ijpharm.2006.05.068 CrossRefPubMedGoogle Scholar
  60. Rahimi MT, Sarvi S, Sharif M, Abediankenari S, Ahmadpour E, Valadan R, Ramandie MF, Hossein SA, Daryani A (2017) Immunological evaluation of a DNA cocktail vaccine with co-delivery of calcium phosphate nanoparticles (CaPNs) against the Toxoplasma gondii RH strain in BALB/c mice. Parasitol Res 16(2):609–616. doi:10.1007/s00436-016-5325-6
  61. Robert-Gangneux F, Dardé ML (2012) Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 25(2):264–296. doi:10.1128/CMR.05013-11 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Saadatnia G, Golkar M (2012) A review on human toxoplasmosis. Scand J Infect Dis 44(11):805–814. doi:10.3109/00365548.2012.693197 CrossRefPubMedGoogle Scholar
  63. Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnology 2(1):3. doi:10.1186/1477-3155-2-3 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Schöler N, Krause K, Kayser O, Müller RH, Borner K, Hahn H, Liesenfeld O (2001) Atovaquone nanosuspensions show excellent therapeutic effect in a new murine model of reactivated toxoplasmosis. Antimicrob Agents Chemother 45(6):1771–1779. doi:10.1128/AAC.45.6.1771-1779.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Shubar HM, Dunay IR, Lachenmaier S, Dathe M, Bushrab FN, Mauludin R, Müller RH, Fitzner R, Borner K, Liesenfeld O (2009) The role of apolipoprotein E in uptake of atovaquone into the brain in murine acute and reactivated toxoplasmosis. J Drug Target 17(4):257–267. doi:10.1080/10611860902718680
  66. Shubar HM, Lachenmaier S, Heimesaat MM, Lohman U, Mauludin R, Mueller RH, Fitzner R, Borner K, Liesenfeld O (2011) SDS-coated atovaquone nanosuspensions show improved therapeutic efficacy against experimental acquired and reactivated toxoplasmosis by improving passage of gastrointestinal and blood–brain barriers. J Drug Target 19(2):114–124. doi:10.3109/10611861003733995 CrossRefPubMedGoogle Scholar
  67. Si K, Wei L, Yu X, Wu F, Li X, Li C, Cheng Y (2016) Effects of (+)-usnic acid and (+)-usnic acid-liposome on Toxoplasma gondii. Exp Parasitol 166:68–74. doi:10.1016/j.exppara.2016.03.021 CrossRefPubMedGoogle Scholar
  68. Sordet F, Aumjaud Y, Fessi H, Derouin F (1998) Assessment of the activity of atovaquone-loaded nanocapsules in the treatment of acute and chronic murine toxoplasmosis. Parasite 5(3):223–229. doi:10.1051/parasite/1998053223 CrossRefPubMedGoogle Scholar
  69. Tachibana H, Yoshihara E, Kaneda Y, Nakae T (1990) Protection of Toxoplasma gondii-infected mice by stearylamine-bearing liposomes. J Parasitol 76(3):352–355CrossRefPubMedGoogle Scholar
  70. Tanaka S, Kuroda Y, Ihara F, Nishimura M, Hiasa J, Kojima N, Nishikawa Y (2014) Vaccination with profilin encapsulated in oligomannose-coated liposomes induces significant protective immunity against Toxoplasma gondii. Vaccine 32(16):1781–1785. doi:10.1016/j.vaccine.2014.01.095 CrossRefPubMedGoogle Scholar
  71. Tang MF, Lei L, Guo SR, Huang WL (2010) Recent progress in nanotechnology for cancer therapy. Chin J Cancer 29(9):775–780CrossRefPubMedGoogle Scholar
  72. Torres-Sangiao E, Holban AM, Gestal MC (2016) Advanced nanobiomaterials: vaccines, diagnosis and treatment of infectious diseases. Moleculesl 21(7):E867. doi:10.3390/molecules21070867 CrossRefGoogle Scholar
  73. Vandhana S, Deepa PR, Aparna G, Jayanthi U, Krishnakumar S (2010) Evaluation of suitable solvents for testing the anti-proliferative activity of triclosan-a hydrophobic drug in cell culture. Indian J Biochem Biophys 47(3):166–171PubMedGoogle Scholar
  74. Verma DD, Verma S, Blume G, Fahr A (2003) Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm 258(1–2):141–151. doi:10.1016/S0378-5173(03)00183-2 CrossRefPubMedGoogle Scholar
  75. Waldeland H, Frenkel JK (1983) Live and killed vaccines against toxoplasmosis in mice. J Parasitol 69(1):60–65. doi:10.2307/3281275 CrossRefPubMedGoogle Scholar
  76. Wang H, Lei C, Li J, Wu Z, Shen G, Yu R (2004a) A piezoelectric immunoagglutination assay for Toxoplasma gondii antibodies using gold nanoparticles. Biosens Bioelectron 19(7):701–709CrossRefPubMedGoogle Scholar
  77. Wang H, Li J, Ding Y, Lei C, Shen G, Yu R (2004b) Novel immunoassay for Toxoplasma gondii-specific immunoglobulin G using a silica nanoparticle-based biomolecular immobilization method. Anal Chim Acta 501(1):37–43. doi:10.1016/j.aca.2003.09.018 CrossRefGoogle Scholar
  78. Xu S, Miao H, Yang Y, Zhang J, Li H, Dai Z, Zheng G, Yang J, Sun B, Feng T, Zi Y (2011) Fabrication and characterization of a Toxoplasma gondii DNA sensing system. Adv Mater Res 152-153:1543–1546. doi:10.4028/www.scientific.net/AMR.152-153.1543 CrossRefGoogle Scholar
  79. Xu S, Zhang C, He L, Wang T, Ni L, Sun M, Miao H, Zhang J, Dai Z, Wang B, Zheng G (2013) DNA detection of Toxoplasma gondii with a magnetic molecular beacon probe via CdTe@Ni quantum dots as energy donor. J Nanomater 2013:62. doi:10.1155/2013/473703 Google Scholar
  80. Yang H, Guo Q, He R, Li D, Zhang X, Bao C, Hu H, Cui D (2009) A quick and parallel analytical method based on quantum dots labeling for ToRCH-related antibodies. Nanoscale Res Lett 4(12):1469–1474. doi:10.1007/s11671-009-9422-7 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zhang K, Lin G, Han Y, Li J (2016) Serological diagnosis of toxoplasmosis and standardization. Clin Chim Acta 461:83–89. doi:10.1016/j.cca.2016.07.018 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • João Paulo Assolini
    • 1
  • Virginia Márcia Concato
    • 1
  • Manoela Daiele Gonçalves
    • 1
  • Amanda Cristina Machado Carloto
    • 1
  • Ivete Conchon-Costa
    • 1
  • Wander Rogério Pavanelli
    • 1
  • Francine Nesello Melanda
    • 1
  • Idessania Nazareth Costa
    • 1
    • 2
  1. 1.Departamento de Ciências Patológicas, Laboratório de ParasitologiaUniversidade Estadual de LondrinaLondrinaBrazil
  2. 2.Departamento de Ciências Patológicas — Laboratório de ParasitologiaUniversidade Estadual de Londrina—UELLondrinaBrazil

Personalised recommendations