Parasitology Research

, Volume 116, Issue 4, pp 1207–1225 | Cite as

Evolutionary anatomy of the muscular apparatus involved in the anchoring of Acanthocephala to the intestinal wall of their vertebrate hosts

Original Paper

Abstract

Different conceptions exist regarding structure, function, and evolution of the muscles that move the acanthocephalan presoma, including the proboscis, i.e., the usually hooked hold-fast anchoring these endoparasites to the intestinal wall of their vertebrate definitive hosts. In order to clarify the unresolved issues, we carried out a light microscopic analysis of series of semi-thin sections and whole mounts representing the three traditional acanthocephalan classes: Archiacanthocephala (Macracanthorhynchus hirudinaceus), Eoacanthocephala (Paratenuisentis ambiguus, Tenuisentis niloticus), and Palaeacanthocephala (Acanthocephalus anguillae, Echinorhynchus truttae, Pomphorhynchus laevis, Corynosoma sp.). Combining our data with published light, transmission electron, and scanning electron microscopic data, we demonstrate that receptacle protrusor and proboscis receptacle in Archi- and Eoacanthocephala are homologous to the outer and inner wall of the proboscis receptacle in Palaeacanthocephala. Besides the proboscis receptacle and a “surrounding muscle,” the last common ancestor of Acanthocephala presumably possessed a proboscis retractor, receptacle retractor, neck retractor (continuous with lemnisci compressors), and retinacula. These muscles most probably evolved in the acanthocephalan stem line. Moreover, the last common ancestor of Acanthocephala presumably possessed only a single layer of muscular cords under the presomal tegument while the metasomal body wall had circular and longitudinal strands. Two lateral receptacle flexors (also lateral receptacle protrusors), an apical muscle plate (surrounding one or two apical sensory organs), a midventral longitudinal muscle, and the differentiation of longitudinal body wall musculature at the base of the proboscis probably emerged within Archiacanthocephala. All muscles have a common organization principle: a peripheral layer of contractile filaments encloses the cytoplasm.

Keywords

Apomorphy Thorny-headed worms Functional anatomy Comparative anatomy Evolutionary novelties 

References

  1. Ahlrichs WH (1995) Zur Ultrastruktur und Phylogenie von Seison nebaliae Grube, 1859, und Seison annulatus Claus, 1876—Hypothesen zu phylogenetischen Verwandtschaftsverhältnissen innerhalb der Bilateria. Cuvillier, GöttingenGoogle Scholar
  2. Ahlrichs WH (1997) Epidermal ultrastructure of Seison nebaliae and Seison annulatus, and a comparison of epidermal structures within the Gnathifera. Zoomorphology 117:41–48Google Scholar
  3. Amin OM (1987) Key to the families and subfamilies of Acanthocephala, with the erection of a new class (Polyacanthocephala) and a new order (Polyacanthorhynchida). J Parasitol 73:1216–1219CrossRefPubMedGoogle Scholar
  4. Amin OM (2005) Occurrence of the subgenus Acanthosentis Verma & Datta, 1929 (Acanthocephala Quadrigyridae) in Japan, with the description of Acanthogyrus (Acanthosentis) alternatspinus n. sp. and A. (A.) parareceptaclis n. sp. from Lake Biwa drainage fishes and a key to the species of the subgenus. Syst Parasitol 60:125–137CrossRefPubMedGoogle Scholar
  5. Amin OM (2013) Classification of the Acanthocephala. Folia Parasitol 60:273–305CrossRefPubMedGoogle Scholar
  6. Amin OM, Dailey MD (1998) Description of Mediorhynchus papillosus (Acanthocephala: Gigantorhynchidae) from a Colorado, USA, population, with a discussion of morphology and geographical variability. J Helminthol Soc Wash 65:189–200Google Scholar
  7. Amin OM, Dezfuli BS (1995) Taxonomic notes on Polyacanthorhynchus kenyensis (Acanthocephala, Polyacanthorhynchidae) from lake Neivasha, Kenya. J Parasitol 81:76–79CrossRefPubMedGoogle Scholar
  8. Amin OM, Heckmann RA (1992) Description and pathology of Neoechinorhynchus idahoensis n. sp. (Acanthocephala, Neoechinorhynchidae) in Catostomus columbianus from Idaho. J Parasitol 78:34–39CrossRefPubMedGoogle Scholar
  9. Amin OM, Whittaker FH, Klueber KM, Hoffpauir J (1993) Ultrastructure of the body wall of Neoechinorhynchus cylindratus (Acanthocephala) associated with reproductive activity. T Am Microsc Soc 112:208–216CrossRefGoogle Scholar
  10. Amin OM, Heckmann RA, Inchausty V, Vasquez R (1996) Immature Polyacanthorhynchus rhopalorhynchus (Acanthocephala: Polyacanthorhynchidae) in venton, Hoplias malabaricus (Pisces) from Moca Vie River, Bolivia, with notes on its apical organ and histopathology. J Helminthol Soc Wash 63:115–119Google Scholar
  11. Amin OM, Saoud MF, Alkuwari KS (2002) Neoechinorhynchus qatarensis sp. n. (Acanthocephala: Neoechinorhynchidae) from the blue-barred flame parrot fish, Scarus ghobban Forsskal, 1775, in Qatari waters of the Arabian Gulf. Parasitol Int 51:171–176CrossRefPubMedGoogle Scholar
  12. Amin OM, Heckmann R, Standing MD (2007) The structural-functional relationship of the para-receptacle structure in Acanthocephala. Comp Parasitol 74:383–387CrossRefGoogle Scholar
  13. Amin OM, Ha NV, Ha DN (2011) First report of Neoechinorhynchus (Acanthocephala: Neoechinorhynchidae) from marine fish of the eastern seaboard of Vietnam, with the description of six new species. Parasite 18:21–34CrossRefPubMedPubMedCentralGoogle Scholar
  14. Amin OM, Heckmann RA, Sahara A, Yudhanto S (2013) The finding of Mediorhynchus gallinarum (Acanthocephala: Gigantorhynchidae) in chickens from Indonesia, with expanded description using SEM. Comp Parasitol 80:39–46CrossRefGoogle Scholar
  15. Amin OM, Heckmann RA, Van Ha N (2014) Acanthocephalans from fishes and amphibians in Vietnam, with descriptions of five new species. Parasite. doi:10.1051/parasite/2014052 PubMedPubMedCentralGoogle Scholar
  16. Amin OM, Evans RP, Boungou M, Heckmann R (2016a) Morphological and molecular description of Tenuisentis niloticus (Meyer, 1932) (Acanthocephala: Tenuisentidae) from Heterotis niloticus (Cuvier) (Actinopterygii: Arapaimidae), in Burkina Faso, with emendation of the family diagnosis and notes on new features, cryptic genetic diversity and histopathology. Syst Parasitol 93:173–191CrossRefPubMedGoogle Scholar
  17. Amin OM, Heckmann RA, Mohammed O, Evans RP (2016b) Morphological and molecular descriptions of Moniliformis saudi sp. n. (Acanthocephala: Moniliformidae) from the desert hedgehog, Paraechinus aethiopicus (Ehrenberg) in Saudi Arabia, with a key to species and notes on histopathology. Folia Parasitol 63:014CrossRefGoogle Scholar
  18. Aznar FJ, Pérez-Ponce de Leon G, Raga JA (2006) Status of Corynosoma (Acanthocephala: Polymorphidae) based on anatomical, ecological, and phylogenetic evidence, with the erection of Pseudocorynosoma n. gen. J Parasitol 92:548–564CrossRefPubMedGoogle Scholar
  19. Baltzer C (1880) Zur Kenntnis der Echinorhynchen. Arch f Naturgesch 46:1–40Google Scholar
  20. Bhalerao GD (1937) On a remarkable Acanthocephala from a fowl in India. Proc Zoll Soc Lond B:199–203Google Scholar
  21. Bolette DP (1997) Sphaerechinorhynchus ophiograndis n. sp. (Acanthocephala: Plagiorhynchidae: Sphaerechinorhynchinae), described from the intestine of a king cobra, Ophiophagus hannah. J Parasitol 83:272–275CrossRefPubMedGoogle Scholar
  22. Brázová T, Poddubnaya LG, Miss NR, Hanzelovà V (2014) Ultrastructure and chemical composition of the proboscis hooks of Acanthocephalus lucii (Müller, 1776) (Acanthocephala: Palaeacanthocephala) using X-ray elemental analysis. Folia Parasitol 61:549–557PubMedGoogle Scholar
  23. Bullock WL, Samuel G (1975) Paratenuisentis gen. n. for Tanaorhamphus ambiguus Van Cleave 1921 (Acanthocephala), with a reconsideration of the Tenuisentidae. J Parasitol 61:105–109Google Scholar
  24. Byrd EE, Kellog FE (1971) Mediorhynchus bakeri, a new acanthocephalan (Gigantorhynchidae) from the bob-white Colinus virginianus virginianus (L.). J Parasitol 57:137–142CrossRefGoogle Scholar
  25. Choi CJ, Lee HJ, Go JH, Park YK, Chai JY, Seo M (2010) Extraintestinal migration of Centrorhynchus sp. (Acanthocephala: Centrorhynchidae) in experimentally infected rats. Korean J Parasitol 48:139–143Google Scholar
  26. Clement P (1987) Movements in rotifers correlations of ultrastructure and behavior. Hydrobiologia 147:339–359CrossRefGoogle Scholar
  27. Clement P, Amsellem J (1989) The skeletal muscles of rotifers and their innervation. Hydrobiologia 186-187:255–278CrossRefGoogle Scholar
  28. Das EN (1952) On a new species of Acanthocephala of the genus Mediorhynchus (Van Cleave, 1916) from India. Records of the Indian Museum XLIX:55–66Google Scholar
  29. Dezfuli BS, Pironi F, Giari L, Domeneghini C, Bosi G (2002) Effect of Pomphorhynchus laevis (Acanthocephala) on putative neuromodulators in the intestine of naturally infected Salmo trutta. Dis Aquat Org 51:27–35CrossRefPubMedGoogle Scholar
  30. Dezfuli BS, Bo T, Lorenzoni M, Shinn AP, Giari L (2015) Fine structure and cellular responses at the host-parasite interface in a range of fish-helminth systems. Vet Parasitol 208:272–279CrossRefPubMedGoogle Scholar
  31. Díaz Cosín DJ (1972) La pared del cuerpo de Macracanthorhynchus hirudinaceus. Biol R Soc Española Hist Nat (Biol) 70:239–270Google Scholar
  32. Dunagan TT, Miller DM (1974) Muscular anatomy of the praesoma of Macracanthorhynchus hirudinaceus (Acanthocephala). J Helminthol Soc Wash 41:199–208Google Scholar
  33. García-Varela M, Cummings MP, de León P-P, Gerardo GSL, Laclette JP (2002) Phylogenetic analysis based on 18S ribosomal RNA gene sequences supports the existence of class Polyacanthocephala (Acanthocephala). Mol Phylogenet Evol 23:288–292CrossRefPubMedGoogle Scholar
  34. Gazi M, Kim J, García-Varela M, Park C, Littlewood D, Tim J, Park J (2016) Mitogenomic phylogeny of Acanthocephala reveals novel class relationships. Zool Scr 45:437–454CrossRefGoogle Scholar
  35. Gee RJ (1987) A morphological study of the nervous system of the praesoma of Paulisentis fractus (Acanthocephala, Neoechinorhynchidae). J Morphol 191:193–204CrossRefGoogle Scholar
  36. Gendron AD, Marcogliese DJ (2016) Reduced survival of a native parasite in the invasive round goby: evidence for the dilution hypothesis? Aquat Invasions 11:189–198CrossRefGoogle Scholar
  37. Gudivada M, Chikkam V, Vankara AP (2010) On a new species of Neoechinorhynchus Hamann, 1892 (Acanthocephala: Neoechinorhynchoidea Southwell et Macfie, 1925) from Indian threadfin fish, Leptomelanosoma indicum Shaw, 1804 from Visakhapatnam coast, Andhra Pradesh, India. J Parasit Dis 34:89–93CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gupta N, Gupta DK, Singhal P (2015) Description of Pallisentis (Brevititospinus) punctati n. sp. (Acanthocephala: Quadrigyridae) from Channa punctatus in Bareilly, Uttar Pradesh, India. Iran J Parasitol 10:605–616Google Scholar
  39. Hamann O (1891) Die Nemathelminthen: Beiträge zur Kenntnis ihrer Entwicklung, ihres Baues und ihrer Lebensgeschichte. Erstes Heft. Monographie der Acanthocephalen (Echinorhynchen), Ihre Entwickelung, Histogenie, Anatomie, nebst Beiträgen zur Systematik und Biologie. G. Fischer, JenaGoogle Scholar
  40. Hammond RA (1966) The proboscis mechanism of Acanthocephalus ranae. J Exp Biol 45:203–213Google Scholar
  41. Harada I (1931) Das Nervensystem von Bolbosoma turbinella (Dies.). Jpn J Zool 3:161–199Google Scholar
  42. Herlyn H (2001) First description of an apical epidermis cone in Paratenuisentis ambiguus (Acanthocephala Eoacanthocephala) and its phylogenetic implications. Parasitol Res 87:306–310CrossRefPubMedGoogle Scholar
  43. Herlyn H (2002) The musculature of the praesoma in Macracanthorhynchus hirudinaceus (Acanthocephala, Archiacanthocephala) re-examination and phylogenetic significance. Zoomorphology 121:173–182CrossRefGoogle Scholar
  44. Herlyn H, Ehlers U (2001) Organisation of the praesoma in Acanthocephalus anguillae (Acanthocephala, Palaeacanthocephala) with special reference to the muscular system. Zoomorphology 121:13–18CrossRefGoogle Scholar
  45. Herlyn H, Martini N, Ehlers U (2001) Organisation of the praesoma of Paratenuisentis ambiguus (Van Cleave, 1921) (Acanthocephala: Eoacanthocephala), with special reference to the lateral sense organs and musculature. Syst Parasitol 50:105–116CrossRefPubMedGoogle Scholar
  46. Herlyn H, Piskurek O, Schmitz J, Ehlers U, Zischler H (2003) The syndermatan phylogeny and the evolution of acanthocephalan endoparasitism as inferred from 18S rDNA sequences. Mol Phylogenet Evol 26:155–164CrossRefPubMedGoogle Scholar
  47. Hyman LH (1951) The pseudocoelomate Bilateria, vol 3—Acanthocephala, Aschelminthes, and Entoprocta. McGraw-Hill, New YorkGoogle Scholar
  48. Kaiser JE (1893) Beiträge zur Kenntniss der Anatomie, Histologie und Entwicklungsgeschichte der Acanthocephalen. In: Leuckart R, Chun C (eds) Bibliotheca Zoologica, Vol VII. Theodor Fischer, CasselGoogle Scholar
  49. Khokhlova IG (1966) On the fauna and morphology of Acanthocephala of birds of the Lower Yenisei River and Norilsk lakes. Trudy Gel’mintologicheskoi Laboratorii. Akademiya Nauk SSSR 17:260–276 (In Russian)Google Scholar
  50. Kilian R (1932) Zur Morphologie und Systematik der Gigantorhynchidae (Acanthoceph.). Akademische Verlagsgesellschaft m. b. H., Leipzig. Reprint of an article published in Zeitschr wiss Zool, A, 141:246–345.Google Scholar
  51. Leuckart R (1876) Die menschlichen Parasiten und die von ihnen herrührenden Krankheiten, Vol 2. C. F. Winter’sche Verlagshandlung, LeipzigGoogle Scholar
  52. Lühe M (1904) Geschichte und Ergebnisse der Echinorhynchen-Forschung bis auf Westrumb (1821). Zool Annalen I:139–353Google Scholar
  53. Meyer A (1933) Acanthocephala. Bronn’s Klassen & Ordnungen des Tier-Reichs, Vol 4. Akademische Verlagsgesellschaft m.b.H., LeipzigGoogle Scholar
  54. Miller DM, Dunagan TT (1976) Body wall organization of the acanthocephalan, Macracanthorhynchus hirudinaceus: a reexamination of the lacunar system. J Helminthol Soc Wash 43:99–106Google Scholar
  55. Miller DM, Dunagan TT (1977) The lacunar system and tubular muscles in Acanthocephala. J Helminthol Soc Wash 44:201–205Google Scholar
  56. Miller DM, Dunagan TT (1978) Organization of the lacunar system in the acanthocephalan, Oligacanthorhynchus tortuosa. J Parasitol 64:436–439CrossRefGoogle Scholar
  57. Miller DM, Dunagan TT (1985a) New aspects of acanthocephalan lacunar system as revealed in anatomical modeling by corrosion cast method. J Helminthol Soc Wash 52:221–226Google Scholar
  58. Miller DM, Dunagan TT (1985b) Functional morphology. In: DWT C, Nickol BB (eds) Biology of the Acanthocephala. Cambridge University Press, Cambridge, pp 73–123Google Scholar
  59. Mulisch M, Welsch U (2015) Romeis—Mikroskopische Technik, 19th edn. Springer Spektrum, BerlinCrossRefGoogle Scholar
  60. Nickol BB (1972) Fessisentis, a genus of acanthocephalans parasitic in North American poikilotherms. J Parasitol 58:282–289CrossRefGoogle Scholar
  61. Nikishin VP (2004) Subsurface musculature of spiny-headed worms (Acanthocephala) and its role in formation of intercellular matrix. Biol Bull Acad Sci USSR 31:598–612CrossRefGoogle Scholar
  62. Okulewicz J, Maruszewski W (1980) Apororhynchus silesiaceus sp.n. (Apororhynchidae, Acanthocephala)—a parasite of passerine birds (Passeriformes). Acta Parasitol Pol XXVII:459–470Google Scholar
  63. Pachinger A (1884) Echinorhynchus haeruca Rud. Orvos-Természettudományi Értesítõ II. Természettudományi Szak VI:211–262Google Scholar
  64. Petrochenko VI (1956) Acanthocephala of domestic and wild animals, vol 1. Translated from Russian by the Israel program for scientific translations. Keter Press, JerusalemGoogle Scholar
  65. Petrochenko VI (1958) Acanthocephala of domestic and wild animals, vol 2. Translated from Russian by the Israel program for scientific translations. Keter Press, JerusalemGoogle Scholar
  66. Rauther M (1930) Sechste Klasse des Cladus Nemathelminthes. Acanthocephala-Kratzwürmer. In: Kükenthal W, Krumbach T (eds) Handbuch der Zoologie Bd. 2. Theodor Fischer, Cassel, pp 449–482Google Scholar
  67. Richardson DJ, Gardner SL, Allen JW (2014) Redescription of Oligacanthorhynchus microcephalus (Rudolphi, 1819) Schmidt 1972 (syn. Oligacanthorhynchus tortuosa (Leidy, 1850) Schmidt 1972) (Acanthocephala: Oligacanthorhynchidae). Comp Parasitol 81:53–60CrossRefGoogle Scholar
  68. Schmidt GD (1972a) Revision of the class Archiacanthocephala Meyer, 1931 (phylum Acanthocephala), with emphasis on Oligacanthorhynchidae Southwell et Macfie, 1925. J Parasitol 58:290–297CrossRefPubMedGoogle Scholar
  69. Schmidt GD (1972b) Oncicola schacheri sp. n., and other Acanthocephala of Lebanese mammals. J Parasitol 58:279–281CrossRefPubMedGoogle Scholar
  70. Schmidt GD (1977) Praesomal musculature of the acanthocephalan genus Mediorhynchus Van Cleave 1916. J Parasitol 63:112–116CrossRefPubMedGoogle Scholar
  71. Schmidt GD, Edmonds SJ (1989) Australiformis semoni (Linstow, 1898) n. gen., n. comb. (Acanthocephala: Moniliformidae) from marsupials of Australia and New Guinea. J Parasitol 75:215–217CrossRefPubMedGoogle Scholar
  72. Schmidt-Rhaesa A (2007) The evolution of organ systems. Oxford University Press, OxfordCrossRefGoogle Scholar
  73. Sielaff M, Schmidt H, Struck TH, Rosenkranz D, Welch M, David B, Hankeln T, Herlyn H (2016) Phylogeny of Syndermata (syn. Rotifera): mitochondrial gene order verifies epizoic Seisonidea as sister to endoparasitic Acanthocephala within monophyletic Hemirotifera. Mol Phylogenet Evol 96:79–92CrossRefPubMedGoogle Scholar
  74. Smales L (2015) Acanthocephala. In: Schmidt-Rhaesa A (ed) Handbook of zoology vol 3—Gastrotricha, Cycloneuralia and Gnathifera. De Gruyter, Berlin, pp 317–343Google Scholar
  75. Smales LR, Aydogdu A, Emre Y (2012) Pomphorhynchidae and Quadrigyridae (Acanthocephala), including a new genus and species (Pallisentinae), from freshwater fishes, Cobitidae and Cyprinodontidae, in Turkey. Folia Parasitol 59:162–166CrossRefPubMedGoogle Scholar
  76. Sørensen MV, Kristensen RM (2015) Micrognathozoa. In: Schmidt-Rhaesa A (ed) Handbook of zoology vol 3—Gastrotricha, Cycloneuralia and Gnathifera. De Gruyter, Berlin, pp 197–216Google Scholar
  77. Taraschewski H (1989a) Host-parasite interface of Paratenuisentis ambiguus (Eoacanthocephala) in naturally infected eel and in laboratory-infected sticklebacks and juvenile carp and rainbow trout. J Parasitol 75:911–919CrossRefPubMedGoogle Scholar
  78. Taraschewski H (1989b) Host-parasite interface of Neoechinorhynchus rutili (Eoacanthocephala) in naturally infected salmonids. J Fish Dis 12:39–48Google Scholar
  79. Taraschewski H (2000) Host-parasite interactions in Acanthocephala a morphological approach. Adv Parasitol 46:1–179CrossRefPubMedGoogle Scholar
  80. Taraschewski H (2012) In: Mehlhorn H (ed) Encyclopedia of parasitology, 3rd edn. Springer, Berlin, pp 3–24Google Scholar
  81. Taraschewski H (2015) Acanthocephala: functional morphology. In: Schmidt-Rhaesa A (ed) Handbook of zoology vol 3—Gastrotricha, Cycloneuralia and Gnathifera. De Gruyter, Berlin, pp 301–316Google Scholar
  82. Taraschewski H, Mackenstedt U (1991a) Autoradiographic and morphological studies on the uptake of the triglyceride [3H]-glyceroltrioleate by acanthocephalans. Parasitol Res 77:247–254CrossRefPubMedGoogle Scholar
  83. Taraschewski H, Mackenstedt U (1991b) Autoradiographic and morphological investigations on the uptake and incorporation of tritiated lysin by acanthocephalans. Parasitol Res 77:536–541CrossRefPubMedGoogle Scholar
  84. Taraschewski H, Sagani C, Mehlhorn H (1989) Ultrastructural study of the host-parasite interface of Moniliformis moniliformis (Archiacanthocephala) in laboratory-infected rats. J Parasitol 75(2):288–296CrossRefPubMedGoogle Scholar
  85. Tubangui MA, Masilungan VA (1946) On two Acanthocephala from the Philippines. J Parasitol 32:154–155CrossRefPubMedGoogle Scholar
  86. Van Cleave HJ (1921) Acanthocephala from the eel. Trans Am Microsc Soc 40:1–13 Google Scholar
  87. Van Cleave HJ, Bullock WL (1950) Morphology of Neoechinorhynchus emydis, a typical representative of the Eoacanthocephala. I. The praesoma. Trans Am Microsc Soc 69:288-308Google Scholar
  88. Verweyen L, Klimpel S, Palm HW (2011) Molecular phylogeny of the Acanthocephala (class Palaeacanthocephala) with a paraphyletic assemblage of the orders Polymorphida and Echinorhynchida. PLoS One 6:e28285CrossRefPubMedPubMedCentralGoogle Scholar
  89. von Haffner K (1943) Die Sinnesorgane an der Rüsselspitze der Acanthocephalen. Z f Morphol u Ökol d Tiere 40:80–92CrossRefGoogle Scholar
  90. von Haffner K (1950) Organisation und systematische Stellung der Acanthocephalen. Zool Anz 145(Suppl):243–274Google Scholar
  91. Wanson WW, Nickol BB (1975) Presomal morphology and development of Prosthorhynchus formosus, Prosthenorchis elegans, and Moniliformis dubius (Acanthocephala). J Morphol 145:73–84CrossRefGoogle Scholar
  92. Westrumb AHL (1821) De helminthibus acanthocephalis: Commentatio historico-anatomica adnexo recensa animalium, in Museo Vindobonensi circa helminthes dissectorum, et singularum specierum harum in illis repertarum. Helwing, HannoverGoogle Scholar
  93. Wey-Fabrizius AR, Herlyn H, Rieger B, Rosenkranz D, Witek A, Welch DB, Mark EI, Hankeln T (2014) Transcriptome data reveal syndermatan relationships and suggest the evolution of endoparasitism in Acanthocephala via an epizoic stage. PLoS One 9:e88618CrossRefPubMedPubMedCentralGoogle Scholar
  94. Yamaguti S (1954) Parasitic worms from Celebes. Part 8. Acanthocephala. Acta Medicinae Okayama 8:406–413Google Scholar
  95. Yamaguti S (1963) Systema helminthum, vol 5—Acanthocephala. Interscience Publishers, New YorkGoogle Scholar
  96. Zeder, JGH (1800) Erster Nachtrag zur Naturgeschichte der Eingeweidewürmer: based on “Naturgeschichte der Eingeweidewürmer” by Goeze, J. A. E.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institut für Organismische und Molekulare EvolutionsbiologieJohannes Gutenberg University MainzMainzGermany
  2. 2.Institute of Zoology, Department of Ecology and ParasitologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations