Parasitology Research

, Volume 116, Issue 2, pp 539–547 | Cite as

In vivo assessment of the antimalarial and spleen-protective activities of the Saudi propolis methanolic extract

  • Qwait AlGabbani
  • Lamjed Mansour
  • Yasser A. Elnakady
  • Saleh Al-Quraishy
  • Suliman Alomar
  • Esam M. Al-Shaebi
  • Abdel-Azeem S. Abdel-Baki
Original Paper


Antimalarial drug resistance is the main therapeutic challenge to the control of the disease, making the search for new compounds as alternative treatments of central importance. Propolis has a long history of medicinal use due to its antifungal, antibacterial and antiprotozoal properties. The present study therefore aimed to evaluate the antimalarial activity of the Saudi propolis methanolic extract against Plasmodium chabaudi infection in mice. To this end, albino mice were divided into five groups: the first group was the normal control; the second, third, fourth and fifth groups were infected intraperitoneally with 106 P. chabaudi-parasitized erythrocytes. The last three groups of mice were gavaged with 100 μl of propolis extract (PE) at a dose of 25, 50 and 100 mg PE/kg, respectively, once daily for 7 days. PE significantly suppressed the parasitaemia and showed significant efficacy in ameliorating anaemic conditions in P. chabaudi-infected mice in a dose-dependent manner. Histological investigation of the spleen tissue of treated and untreated mice further supports the antimalarial potential of PE. In addition, our study proved that Saudi PE reduced oxidative damage by decreasing the malondialdehyde (MDA) and increasing the catalase (CAT) activity and the glutathione (GSH) levels. Also, Saudi PE increased the level of some pro-inflammatory cytokines such as IFN-γ, TNF-α, GM-CSF and G-CSF, with the most effective dose being 100 mg PE/kg. In conclusion, PE showed antimalarial and antioxidant activities and provided protection against spleen tissue damage in P. chabaudi-infected mice.


Propolis Plasmodium Oxidative stress Spleen Histopathology Cytokines 



This research project was supported by a grant from the “Research Center for the Female Scientific and Medical College”, Deanship of Scientific Research, King Saud University.

Compliance with ethical standards

This work was approved by the state authorities and followed the Saudi Arabian rules for animal protection.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adegbolagun OM, Emikpe BO, Woranola IO, Ogunremi Y (2013) Synergistic effect of aqueous extract of Telfaria occidentalis on the biological activities of artesunate in Plasmodium berghei infected mice. Afr Health Sci 13:970–976CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aebi HU (ed) (1984) Methods in enzymatic analysis. Academic, New York, pp 276–286Google Scholar
  3. Angulo I, Fresno M (2002) Cytokines in the pathogenesis of and protection against malaria. Clin Diagn Lab Immunol 9:1145–1152PubMedPubMedCentralGoogle Scholar
  4. Bankova V, Trusheva B, Popova M (2008) New developments in propolis chemical diversity studies (since 2000). In: Oršolic N, Bašić I (eds) Scientific evidence of the use of propolis in ethnomedicineGoogle Scholar
  5. Barreda DR, Hanington PC, Belosevic M (2004) Regulation of myeloid development and function by colony stimulating factors. Dev Comp Immunol 28:509–554CrossRefPubMedGoogle Scholar
  6. Beutler E, Duron O, Kelly B (1963) Improved method for determination of blood glutathione. J Lab Clin Med 61:882PubMedGoogle Scholar
  7. Björkman A (2002) Malaria associated anaemia, drug resistance and antimalarial combination therapy. Int J Parasitol 32:1637–1643CrossRefPubMedGoogle Scholar
  8. Boura M, Frita R, Gois A, Carvalho T, Hanscheid T (2013) The hemozoin conundrum: is malaria pigment immune activating, inhibiting, or simply a bystander? Trends Parasitol 29:469–476CrossRefPubMedGoogle Scholar
  9. Bruna-Romero O, Schmieg J, Del Val M, Buschle M, Tsuji M (2003) The dendritic cell-specific chemokine, dendritic cell-derived CC chemokine 1, enhances protective cell-mediated immunity to murine malaria. J Immunol 170:3195–3203CrossRefPubMedGoogle Scholar
  10. Bueno-Silva B, Alencar SM, Koo H, Ikegaki M, Silva GV, Napimoga MH, Rosalen PL (2013) Anti-inflammatory and antimicrobial evaluation of neovestitol and vestitol isolated from Brazilian red propolis. J Agric Food Chem 61:4546–4550CrossRefPubMedGoogle Scholar
  11. Burdock GA (1998) Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol 36:347–363CrossRefPubMedGoogle Scholar
  12. Del Portillo HA, Ferrer M, Brugat T, Martin-Jaular L, Langhorne J, Lacerda MV (2012) The role of the spleen in malaria. Cell Microbiol 14:343–355CrossRefPubMedGoogle Scholar
  13. Falcão SI, Vale N, Cos P, Gomes P, Freire C, Maes L, Vilas-Boas M (2014) In vitro evaluation of Portuguese propolis and floral sources for antiprotozoal, antibacterial and antifungal activity. Phytother Res 28:437–743CrossRefPubMedGoogle Scholar
  14. Farnesi AP, Aquino-Ferreira R, De Jong D, Bastos JK, Soares AE (2009) Effects of stingless bee and honey bee propolis on four species of bacteria. Genet Mol Res 8:635–640CrossRefPubMedGoogle Scholar
  15. Fell AH, Smith NC (1998) Immunity to asexual blood stages of Plasmodium: is resistance to acute malaria adaptive or innate? Parasitol Today 14:364–369CrossRefPubMedGoogle Scholar
  16. Freitas SF, Shinohara L, Sforcin JM, Guimarães S (2006) In vitro effects of propolis on Giardia duodenalis trophozoites. Phytomedicine 13:170–175CrossRefPubMedGoogle Scholar
  17. Gamo FJ, Sanz LM, Vidal J, de Cozar C, Alvarez E, Lavandera JL, Vanderwall DE, Green DV, Kumar V, Hasan S, Brown JR, Peishoff CE, Cardon LR, Garcia-Bustos JF (2010) Thousands of chemical starting points for antimalarial lead identification. Nature 465:305–310CrossRefPubMedGoogle Scholar
  18. Gao W, Wu J, Wei J, Pu L, Guo C, Yang J, Yang M, Luo H (2014) Brazilian green propolis improves immune function in aged mice. J Clin Biochem Nutr 55:7–10CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hafiz TA, Mubaraki MA, Al-Quraishy S, Dkhil MA (2016) The potential role of Punica granatum treatment on murine malaria-induced hepatic injury and oxidative stress. Parasitol Res 115:1427–1433CrossRefPubMedGoogle Scholar
  20. Herrera CL, Alvear M, Barrientos L (2010) The antifungal effect of six commercial extracts of Chilean propolis on Candida spp. Cien Inv Agr 37:75–84CrossRefGoogle Scholar
  21. Huang S, Zhang C, Wang K, Li GQ, Hu F (2014) Recent advances in the chemical composition of propolis. Molecules 19:19610–19632CrossRefPubMedGoogle Scholar
  22. Iwalokun BA (2008) Enhanced antimalarial effects of chloroquine by aqueous Vernonia amygdalina leaf extract in mice infected with chloroquine resistant and sensitive Plasmodium berghei strains. Afr Health Sci 8:25–35PubMedPubMedCentralGoogle Scholar
  23. Jabbarzare M, Chin VK, Talib H, Yam MF, Adam SK, Hassan H, Abdul Majid R, Mat Taib CN, Mohd Moklas MA, Taufik Hidayat M, Mohd Sidek H, Basir R (2015) Interleukin-18 antagonism improved histopathological conditions of malaria infection in mice. Iran J Parasitol 10:389–401PubMedPubMedCentralGoogle Scholar
  24. Kalia P, Kumar NR, Harjai K (2014) Studies on the effect of ethanolic extract of propolis in BALB/c mice. J App Nat Sci 6:638–643Google Scholar
  25. Kalia P, Kumar NR, Harjai K (2016) Effect of propolis extract on hematotoxicity and histological changes induced by Salmonella enteric serovar Typhimurium in BALB/c mice. Arch Biol Sci 68:385–391CrossRefGoogle Scholar
  26. Kim TS, Sohn Y, Kim JY, Lee WJ, Na BK, Kang YJ, Lee HW (2014) Detection of antibodies against the CB9 to ICB10 region of merozoite surface protein-1 of Plasmodium vivax among the inhabitants in epidemic areas. Malar J 13:311CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kismet K, Sabuncuoglu MZ, Kilicoglu SS, Kilicoglu B, Devrim E, Erel S, Sunay AE, Erdemli E, Durak I, Akkus MA (2008) Effect of propolis on oxidative stress and histomorphology of liver tissue in experimental obstructive jaundice. Eur Surg Res 41:231–237CrossRefPubMedGoogle Scholar
  28. Komlaga G, Agyare C, Dickson RA, Mensah MLK, Annan K, Loiseau PM, Champy P (2015) Medicinal plants and finished marketed herbal products used in the treatment of malaria in the Ashanti region, Ghana. J Ethnopharmacol 172:333–346CrossRefPubMedGoogle Scholar
  29. Lawal B, Shittu OK, Abubakar AN, Haruna GM, Saidu S, Ossai PC (2015a) Haematopoetic effect of methanol extract of Nigerian honey bee (Apis mellifera) propolis in mice. J Coast Life Med 3:648–651CrossRefGoogle Scholar
  30. Lawal B, Shittu OK, Kabiru AY, Jigam AA, Umar MB, Berinyuy EB, Alozieuwa BU (2015b) Potential antimalarials from African natural products: a review. J Intercult Ethnopharmacol 4:318–343CrossRefPubMedPubMedCentralGoogle Scholar
  31. Levesque MA, Sullivan AD, Meshnick SR (1999) Splenic and hepatic hemozoin in mice after malaria parasite clearance. J Parasitol 85:570–573CrossRefPubMedGoogle Scholar
  32. Ley B, Alam MS, Thriemer K, Hossain MS, Kibria MG, Auburn S, Poirot E, Price RN, Khan WA (2016) G6PD deficiency and antimalarial efficacy for uncomplicated malaria in Bangladesh: a prospective observational study. PLoS One 11:e0154015CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lima LD, Andrade SP, Campos PP, Barcelos LS, Soriani FM, Moura SA, Ferreira MA (2014) Brazilian green propolis modulates inflammation, angiogenesis and fibrogenesis in intraperitoneal implant in mice. BMC Complement Altern Med 14:177CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lopes D, Rungsihirunrat K, Nogueira F, Seugorn A, Gil JP, Do Rosário VE, Cravo P (2002) Molecular characterisation of drug-resistant Plasmodium falciparum from Thailand. Malar J 14:1–12Google Scholar
  35. Lubbad MY, Al-Quraishy S, Dkhil MA (2015) Antimalarial and antioxidant activities of Indigofera oblongifolia on Plasmodium chabaudi-induced spleen tissue injury in mice. Parasitol Res 114:3431–3438CrossRefPubMedGoogle Scholar
  36. Machado JL, Assuncao AK, da Silva MC, Dos Reis AS, Costa GC, Arruda Dde S, Rocha BA, Vaz MM, Paes AM, Guerra RN et al (2012) Brazilian green propolis: anti-inflammatory property by an immunomodulatory activity. J Evid Based Complementary Alternat Med 2012:157652Google Scholar
  37. McCall MB, Sauerwein RW (2010) Interferon-gamma central mediator of protective immune responses against the pre-erythrocytic and blood stage of malaria. J Leukoc Biol 88:1131–1143CrossRefPubMedGoogle Scholar
  38. Menendez C, Fleming AF, Alonso PL (2000) Malaria-related anaemia. Parasitol Today 16:469–676CrossRefPubMedGoogle Scholar
  39. Missima F, Sforcin JM (2008) Green Brazilian propolis action on macrophages and lymphoid organs of chronically stressed mice. J Evid Based Complementary Alternat Med 5:71–75CrossRefGoogle Scholar
  40. Nega D, Assefa A, Mohamed H, Solomon H, Woyessa A, Assefa Y, Kebede A, Kassa M (2016) Therapeutic efficacy of Artemether-Lumefantrine (Coartem®) in treating uncomplicated P. falciparum malaria in Metehara, Eastern Ethiopia: regulatory clinical study. PLoS One 11:e0154618CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nogueira CR, Lopes LMX (2011) Antiplasmodial natural products. Molecules 16:2146–2190CrossRefGoogle Scholar
  42. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefPubMedGoogle Scholar
  43. Olayemi KI (2014) Therapeutic potentials of Nigerian insect-propolis against malarial parasite, Plasmodium bergei (Haemosorida plasmodidae). Am J Drug Discov Dev 4:241–247CrossRefGoogle Scholar
  44. Paulino N, Teixeira C, Martins R, Scremin A, Dirsch VM, Vollmar AM, Abreu SR, de Castro SL, Marcucci MC (2006) Evaluation of the analgesic and anti-inflammatory effects of a Brazilian green propolis. Planta Med 72:899–906CrossRefPubMedGoogle Scholar
  45. Rapoport AP, Abboud CN, DiPersio JF (1992) Granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF): receptor biology, signal transduction, and neutrophil activation. Blood Rev 6:43–57CrossRefPubMedGoogle Scholar
  46. Rizk SM, El-Maraghy SA, Nassar NN (2014) A novel role for SIRT-1 in L-arginine protection against STZ induced myocardial fibrosis in rats. PLoS One 9:e114560CrossRefPubMedPubMedCentralGoogle Scholar
  47. Simone-Finstrom M, Spivak M (2010) Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie 41:295–311CrossRefGoogle Scholar
  48. Singla S, Kumar NR, Kaur J (2014) In vivo studies on the protective effect of propolis on doxorubicin induced toxicity in liver of male rats. Toxicol Int 21:191–195CrossRefPubMedPubMedCentralGoogle Scholar
  49. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sönmez MF, Çilenk KT, Karabulut D, Ünalmış S, Deligönül E, Öztürk İ, Kaymak E (2016) Protective effects of propolis on methotrexate-induced testis injury in rat. Biomed Pharmacother 79:44–51CrossRefPubMedGoogle Scholar
  51. Stevenson MM, Riley EM (2004) Innate immunity to malaria. Nat Rev Immunol 4:169–180CrossRefPubMedGoogle Scholar
  52. Szliszka E, Kucharska AZ, Sokol-Letowska A, Mertas A, Czuba ZP, Krol W (2013) Chemical composition and anti-inflammatory effect of ethanolic extract of Brazilian green propolis on activated J774A.1 macrophages. J Evid Based Complementary Alternat Med 2013:976415Google Scholar
  53. Teixeira EW, Negri G, Renata MSAM, Message D, Salatino A (2005) Plant origin of green propolis: bee behavior, plant anatomy and chemistry. Evid Based Complement Alternat Med 2:85–92CrossRefPubMedPubMedCentralGoogle Scholar
  54. Toreti VC, Sato HH, Pastore GM, Park YK (2013) Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evid Based Complement Alternat Med 2013:697390CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ushach I, Zlotnik A (2016) Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol 100:481–489CrossRefPubMedGoogle Scholar
  56. WHO (2014) World malaria report 2014. WHO Press, GenevaGoogle Scholar
  57. WHO (2015) WHO traditional medicine strategy: 2002–2005. WHO Press, GenevaGoogle Scholar
  58. Wunderlich F, Stübig H, Königk E (1982) Development of Plasmodium chabaudi in mouse red blood cells: structural properties of the host and parasite membranes. J Protozool 29:60–66CrossRefPubMedGoogle Scholar
  59. Xu X, Sun L, Dong J, Zhang H (2009) Breaking the cells of rape bee pollen and consecutive extraction of functional oil with superficial carbon oxide. Innovative Food Sci Emerg Technol 10:42–46CrossRefGoogle Scholar
  60. Zhao JQ, Wen YF, Bhadauria M, Nirala SK, Sharma A, Shrivastava S, Shukla S, Agrawal OP, Mathur R (2009) Protective effects of propolis on inorganic mercury induced oxidative stress in mice. Indian J Exp Biol 47:264–269PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Qwait AlGabbani
    • 1
    • 2
  • Lamjed Mansour
    • 1
    • 3
  • Yasser A. Elnakady
    • 1
  • Saleh Al-Quraishy
    • 1
  • Suliman Alomar
    • 1
  • Esam M. Al-Shaebi
    • 1
  • Abdel-Azeem S. Abdel-Baki
    • 1
    • 4
  1. 1.Zoology Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Biology, College of Sciences and HumanitiesPrince Sattam Bin Abdulaziz UniversityAl-KharjSaudi Arabia
  3. 3.Unité de Recherche de Biologie intégrative et Ecologie évolutive et Fonctionnelle des Milieux Aquatiques, Département de Biologie, Faculté des Sciences de TunisUniversité de Tunis El ManarTunisTunisia
  4. 4.Zoology Department, Faculty of ScienceBeni Suef UniversityBeni SuefEgypt

Personalised recommendations