Parasitology Research

, Volume 116, Issue 1, pp 251–258 | Cite as

Ixodes ventalloi: morphological and molecular support for species integrity

  • Maria Stefania Latrofa
  • Alessio Giannelli
  • Maria Flaminia Persichetti
  • Maria Grazia Pennisi
  • Laia Solano-Gallego
  • Emanuele Brianti
  • Antonio Parisi
  • Richard Wall
  • Filipe Dantas-Torres
  • Domenico OtrantoEmail author
Original Paper


Despite their medical and veterinary importance, some tick species are so poorly studied, that their role within pathogen vector transmission cycles is difficult to assess. The tick Ixodes ventalloi is one such species, and its biology and phylogenetic status remain an issue of debate. In the present study, specimens of adult I. ventalloi (n = 65 females; n = 31 males) infesting cats in the Lipari Island (Aeolian archipelago, Sicily, southern Italy) were characterized morphologically and molecularly, the latter based on mitochondrial 16S rRNA and cytochrome c oxidase subunit 1 (cox1) genes. The genetic data and phylogenetic analyses for both mitochondrial genes suggest the existence of two distinct genogroups. The ecological and epidemiological significance of the genetic structure within the I. ventalloi endemic population remains to be determined. The results highlight the need for further analysis of this tick species, including whole mitochondrial genome sequencing and crossbreeding studies, which will be pivotal to complement features of its status as a vector of pathogens.


Ixodes ventalloi Cats Morphology 16S rRNA coxPhylogeny 



The authors would like to thank Dr. Viviana Domenica Tarallo (University of Bari) for the I. ventalloi drawing in Fig. 2.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Arthur DR (1963) British ticks. Butterworths, LondonGoogle Scholar
  2. Arthur DR (1965) Ticks of the genus Ixodes in Africa. Athlone Press, LondonGoogle Scholar
  3. Avise JC (1994) Molecular Markers, Natural History and Evolution. Chapman and Hall, New YorkCrossRefGoogle Scholar
  4. Bailly-Choumara H, Morel P, Rageau J (1974) Premiere contribution au catalogue des tiques du Maroc (Acari, Ixodoidea). Bull Soc Sci Nat Phys Maroc 54:71–80Google Scholar
  5. Burger TD, Shao R, Barker SC (2014) Phylogenetic analysis of mitochondrial genome sequences indicates that the cattle tick, Rhipicephalus (Boophilus) microplus, contains a cryptic species. Mol Phylogenet Evol 76:241–253CrossRefPubMedGoogle Scholar
  6. Chastel C, Main AJ, Couatarmanac’h A, Le Lay G, Knudson DL, Quillien MC, Beaucournu JC (1984) Isolation of Eyach virus (Reoviridae, Colorado tick fever group) from Ixodes ricinus and I. ventalloi ticks in France. Arch Virol 82:161–171CrossRefPubMedGoogle Scholar
  7. Chilton NB, Gasser RB, Beveridge I (1995) Differences in a ribosomal DNA sequence of morphologically indistinguishable species within the Hypodontus macropi complex (Nematoda: Strongyloidea). Int J Parasitol 25:647–651CrossRefPubMedGoogle Scholar
  8. Contini C, Palmas C, Seu V, Stancampiano L, Usai F (2011) Redescription of the male of Ixodes festai Rondelli, 1926 (Ixodida: Ixodidae) on specimens from Sardinia (Italy). Parasite 18:235–240CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dantas-Torres F, Chomel BB, Otranto D (2012) Ticks and tickborne diseases: a One Health perspective. Trends Parasitol 28:437–446CrossRefPubMedGoogle Scholar
  10. Dantas-Torres F (2015) Climate change, biodiversity, ticks and tick-borne diseases: the butterfly effect. Int J Parasitol Parasites Wild 4:452–461CrossRefGoogle Scholar
  11. de la Fuente J, Estrada-Peña A, Venzal JM, Kocan KM, Sonenshine DE (2008) Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci 13:6938–6946CrossRefPubMedGoogle Scholar
  12. Estrada-Peña A (2008) Climate, niche, ticks and models: what they are and how we should interpret them. Parasitol Res 103:S87–S95CrossRefPubMedGoogle Scholar
  13. Estrada-Peña A, Nava S, Petney T (2014) Description of all the stages of Ixodes inopinatus n. sp. (Acari: Ixodidae). Ticks Tick Borne Dis 5:734–743CrossRefPubMedGoogle Scholar
  14. Gilot B, Pérez C (1978) Individualisation et caractérisation de deux Ixodes actuelement confondus: I. festai Rondelli, 1926, I. ventalloi Gil Collado, 1936 (Acarina, Ixodoidea). Rev Suiss Zool 85:143–149CrossRefGoogle Scholar
  15. Gilot B, Marjolet M (1982) Contribution à l’étude du parasitisme humain par les tiques (Ixodidae et Argasidae), plus particulièrement dans le sud-est de la France. Med Mal Infect 72:340–351CrossRefGoogle Scholar
  16. Gil Collado J (1936) Acaros Ixodoideos de Cataluna y Baleares. Mus Cien Nat, BarcelonaGoogle Scholar
  17. Guglielmone AA, Robbins RG, Apanaskevich DA, Petney TN, Estrada-Peña A, Horak IG (2014). The Hard Ticks of the World (Acari: Ixodida: Ixodidae). Springer. HeidelbergGoogle Scholar
  18. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  19. Hubalek Z, Rudolf I (2012) Tick-borne viruses in Europe. Parasitol Res 111:9–36CrossRefPubMedGoogle Scholar
  20. Jameson LJ, Medlock JM (2011) Tick surveillance in Great Britain. Vector Borne Zoonotic Dis 11:403–412CrossRefPubMedGoogle Scholar
  21. Krakowetz CN, Lindsay LR, Chilton NB (2011) Genetic diversity in Ixodes scapularis (Acari: Ixodidae) from six established populations in Canada. Ticks Tick Borne Dis 2:143–450CrossRefPubMedGoogle Scholar
  22. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  23. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  24. Latrofa MS, Dantas-Torres F, Annoscia G, Cantacessi C, Otranto D (2013) Comparative analyses of mitochondrial and nuclear genetic markers for the molecular identification of Rhipicephalus spp. Infect Genet Evol 20:422–447CrossRefPubMedGoogle Scholar
  25. Manilla G (1998) Fauna d’Italia, Acari-Ixodida. Calderini (Edizioni), Bologna, Italy, pp 77–82Google Scholar
  26. Mangold AJ, Bargues MD, Mas-Coma S (1998) Mitochondrial 16S rRNA sequences and phylogenetic relationships of Rhipicephalus and other tick genera among Metastriata (Acari: Ixodidae). Parasitol Res 84:478–484CrossRefPubMedGoogle Scholar
  27. Marquez FJ (2008) Spotted fever group Rickettsia in ticks from southeastern Spain natural parks. Exp Appl Acarol 45:185–194CrossRefPubMedGoogle Scholar
  28. Mori E, Sforzi A, Menchetti M, Mazza G, Lovari S, Pisanu B (2015) Ectoparasite load in the crested porcupine Hystrix cristata Linnaeus, 1758 in Central Italy. Parasitol Res 114:2223–2229CrossRefPubMedGoogle Scholar
  29. Murrell A, Campbell NJ, Barker SC (2000) Phylogenetic analyses of the rhipicephaline ticks indicate that the genus Rhipicephalus is paraphyletic. Mol Phylogenet Evol 16:1–7CrossRefPubMedGoogle Scholar
  30. Otranto D, Dantas-Torres F, Giannelli A, Latrofa MS, Cascio A, Cazzin S, Ravagnan S, Montarsi F, Zanzani SA, Manfredi MT, Capelli G (2014) Ticks infesting humans in Italy and associated pathogens. Parasit Vectors 7:328CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pennisi MG, Persichetti MF, Serrano L, Altet L, Reale S, Gulotta L, Solano-Gallego L (2015) Ticks and associated pathogens collected from cats in Sicily and Calabria (Italy). Parasit Vectors 8:512CrossRefPubMedPubMedCentralGoogle Scholar
  32. Petney TN, Beichel E, Maiwald M, Hassler D (1996) Ixodes ventalloi: a new tick record for Germany. Appl Parasitol 37:96–98Google Scholar
  33. Santos Dias JAT, Santos-Reis M (1989) A carrac¸a Ixodes ventalloi Gil Collado, 1936 como principal ectoparasitade uma populacao de doninhas (Mustela nivalis Linnaeus, 1766) em Portugal. Garcia de Orta, Serie de Zoologia 14:35–50Google Scholar
  34. Santos-Silva MM, Sousa R, Santos AS, Melo P, Encarnação V, Bacellar F (2006) Ticks parasitizing wild birds in Portugal: detection of Rickettsia aeschlimannii, R. helvetica and R. massiliae. Exp Appl Acarol 39:331–338CrossRefPubMedGoogle Scholar
  35. Santos-Silva MM, Beati L, Santos AS, De Sousa R, Núncio MS, Melo P, Santos-Reis M, Fonseca C, Formosinho P, Vilela C, Bacellar F (2011) The hard-tick fauna of mainland Portugal (Acari: Ixodidae): an update on geographical distribution and known associations with hosts and pathogens. Exp Appl Acarol 55:85–121CrossRefPubMedGoogle Scholar
  36. Tamura K, Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S (2012) Estimating divergence times in large molecular phylogenies. PNAS 109:19333–19338CrossRefPubMedPubMedCentralGoogle Scholar
  37. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Bio Evol 30:2725–2729CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Maria Stefania Latrofa
    • 1
  • Alessio Giannelli
    • 1
  • Maria Flaminia Persichetti
    • 2
  • Maria Grazia Pennisi
    • 3
  • Laia Solano-Gallego
    • 4
  • Emanuele Brianti
    • 3
  • Antonio Parisi
    • 5
  • Richard Wall
    • 6
  • Filipe Dantas-Torres
    • 1
    • 7
  • Domenico Otranto
    • 1
    Email author
  1. 1.Department of Veterinary MedicineUniversity of BariValenzanoItaly
  2. 2.Istituto Zooprofilattico Sperimentale della SiciliaPalermoItaly
  3. 3.Department of Veterinary SciencesUniversity of Messina, Polo Universitario AnnunziataMessinaItaly
  4. 4.Department of Animal Medicine and SurgeryAutonomous University of BarcelonaBarcelonaSpain
  5. 5.Istituto Zooprofilattico della Puglia e della BasilicataPutignanoItaly
  6. 6.University of Bristol, School of Biological SciencesBristolUK
  7. 7.Aggeu Magalhães Research Centre, Oswaldo Cruz FoundationRecifeBrazil

Personalised recommendations