Advertisement

Parasitology Research

, Volume 115, Issue 12, pp 4691–4699 | Cite as

Coxiella symbionts are widespread into hard ticks

  • Erik Machado-Ferreira
  • Vinicius F. Vizzoni
  • Emilia Balsemão-Pires
  • Leonardo Moerbeck
  • Gilberto S. Gazeta
  • Joseph Piesman
  • Carolina M. Voloch
  • Carlos A. G. SoaresEmail author
Short Communication

Abstract

Ticks are blood-feeding arthropods and can harbor several bacteria, including the worldwide zoonotic disease Q-fever agent Coxiella burnetii. Recent studies have reported a distinct group of Coxiella mostly associated with Ixodidae ticks, including the primary endosymbionts of Amblyomma americanum. In the present work, a screening for Coxiella infection was performed by 16S ribosomal DNA (rDNA) gene analyses in 293 tick samples of 15 different species sampled worldwide, including Brazil, Colombia, Kenya, and China. Different Coxiella phylotypes were identified, and these putative symbiotic bacteria were detected in ten different Amblyomma tick species. Approximately 61 % of Rhipicephalus sanguineus and ∼37 % of Rhipicephalus microplus DNA samples were positive for Coxiella. Sequence analysis and phylogenetic reconstruction grouped all the detected Coxiella with Coxiella-like symbionts from different Ixodidae ticks. This well-defined clade clearly excludes known phylotypes of C. burnetii pathogens and other Coxiella spp. detected in different environmental samples and other invertebrate hosts.

Keywords

Coxiella symbionts Amblyomma ticks Ixodidae Coxiella burnetii 

Notes

Acknowledgments

The authors would like to thank to the Instituto Nacional do Câncer/Divisão de Genética (Rio de Janeiro, Brazil) for sequencing support, to the Centers for Disease Control and Prevention (DVBID, Fort Collins, CO, USA) for sampling support, and Ms. Maria de Fátima S. Cardoso, Mr. Luiz F. P. Frade and Mr. Sílvio P. Nascimento for their excellent technical assistance. This work was partially supported by the Brazilian agency FAPERJ—Rio de Janeiro (INST-2015/1 Proc. 210.202/2016).

Supplementary material

436_2016_5230_MOESM1_ESM.pdf (4.3 mb)
ESM 1 Supplementary Figure 1 PCR-RFLP analyses of Coxiella-like symbiont 16S rDNA PCR of 16S rDNA amplicons digested with AluI, TaqI, or XbaI. (A) AluI digestion profile of PCR products obtained from A. oblongoguttatum samples lane 1, non-digested amplicon; lanes 2 and 3, restriction products of two Coxiella-positive samples. (B) TaqI digestion profile of PCR products obtained from R. microplus samples lane 1, non-digested amplicon; lane 2, Coxiella sp.–R. microplus; lanes 3, 4, 5, 6, 7, and 8 restriction products of six Coxiella-positive samples. (C) XbaI digestion profile of PCR products obtained from R. sanguineus samples lane 1, non-digested amplicon; lane 2, Coxiella sp.–R. sanguineus; lane 4, Coxiella sp.–R. sanguineus Am 35; lanes 3, 5, 6, 7, 8, 9, 10, 11, 12, and 13 restriction products of ten Coxiella-positive samples. Arrows indicate the expected bands for all digested samples Coxiella-specific primer set as described in the Methods. Digestions were run in 15 % agarose gels. (D) Digestion profile predicted for Coxiella 16 rDNA PCR amplicons using the Nebcutter (http://nc2.neb.com/Nebcutter2/). The GenBank accession number is presented in parenthesis and the approximately expected band size in base pairs (bp). Sequences obtained in the present work are indicated with asterisks. (PDF 4433 kb)
436_2016_5230_MOESM2_ESM.xlsx (13 kb)
ESM 2 TableS1 Detailed samples distribution for the Amblyomma ticks collected from diferent areas of Brazil, Colombia, Kenya, and China. (XLSX 12 kb)
436_2016_5230_MOESM3_ESM.xlsx (12 kb)
ESM 3 TableS2 Detailed samples distribution for the ticks R. sanguineus, R. microplus, and D. nitens collected in different areas of Brazil. (XLSX 12 kb)
436_2016_5230_MOESM4_ESM.xlsb (18 kb)
ESM 4 TableS3 Sequences accession codes for reference Rickettsiella spp. and Coxiella spp. 16S rDNA. (XLSB 17 kb)
436_2016_5230_MOESM5_ESM.xlsx (13 kb)
ESM 5 TableS4 Identity for the Coxiella nucleotide sequences obtained in the present work and previously described tick associated Coxiella or pathogenic C. burnetii. (XLSX 12 kb)
436_2016_5230_MOESM6_ESM.xlsx (11 kb)
ESM 6 TableS5 Sequences representing additional phylogenetic clades shown as collapsed triangles in the Fig. 1. (XLSX 11 kb)

References

  1. Aksoy S, Weiss B, Attardo G (2008) Paratransgenesis applied for control of tsetse transmitted slepping sickness. Adv Exp Med Biol 627:35–48. doi: 10.1007/978-0-387-78225-6_3 CrossRefPubMedGoogle Scholar
  2. Almeida AP, Marcili A, Leite RC, Nieri-Bastos A, Domingues LN, Martins JR, Labruna MB (2012) Coxiella symbiont in the tick Ornithodoros rostratus (Acari: Argasidae). Ticks Tick Borne Dis 4:203–206. doi: 10.1016/j.ttbdis.2012.02.003 CrossRefGoogle Scholar
  3. Andreotti R, Péres de León AA, Dowd SE, Guerrero FD, Bendele KG, Scoles GA (2011) Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiol 11:6. doi: 10.1186/1471-2180-11-6 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Angelakis E, Mediannikov O, Jos S, Berenger J, Parola P, Raoult D (2016) Candidatus Coxiella massiliensis Infection. Emerg Infect Dis 22:285–288. doi: 10.3201/eid2202.150106 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552. doi: 10.1080/10635150600755453 CrossRefPubMedGoogle Scholar
  6. Azad AF, Beard CB (1998) Rickettsial pathogens and their arthropod vectors. Emerg Infect Dis 4:179–185. doi: 10.3201/eid0402.980205 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baldridge GD, Burkhardt NY, Simser JA, Kurtti TJ, Munderloh UG (2004) Sequence and expression analysis of the ompA gene of Rickettsia peacockii, an endosymbiont of the rocky mountain wood tick Dermacentor andersoni. Appl Environ Microbiol 70:6628–6636. doi: 10.1128/AEM.70.11.6628-6636.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Beard CB, Durvasula RV, Richards FF (1998) Bacterial symbiosis in arthropods and the control of disease transmission. Emerg Infect Dis 4:581–591. doi: 10.3201/eid0404.980408 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Beare PA, Howe D, Cockrell DC, Omsland A, Hansen B, Hansen RA (2009a) Characterization of a Coxiella burnetii ftsZ mutant generated by Himar1 transposon mutagenesis. J Bacteriol 191:1369–1381. doi: 10.1128/JB.01580-08 CrossRefPubMedGoogle Scholar
  10. Beare PA, Unsworth N, Andoh M, Voth DE, Omsland A, Gilk SD, Williams KP, Sobral BH, Kupko JJ, Porcella SF, Samuel JE, Heinzen RA (2009b) Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun 77:642–656. doi: 10.1128/IAI.01141-08 CrossRefPubMedGoogle Scholar
  11. Bernasconi MV, Casati S, Peter O, Piffaretti JC (2002) Rhipicephalus ticks infected with Rickettsia and Coxiella in Southern Switzerland (Canton Ticino). Infect Genet Evol 2:111–120. doi: 10.1016/S1567-1348(02)00092-8 CrossRefPubMedGoogle Scholar
  12. Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, Dimopoulos G (2011) Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 332:855–858. doi: 10.1126/science.1201618 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Duron O, Noël V, McCoy KD, Bonazzi M, Sidi-Boumedine K, Morel O, Vavre F, Zenner L, Jourdain E, Durand P, Arnathau C, Renaud F, Trape JF, Biguezoton AS, Cremaschi J, Dietrich M, Léger E, Appelgren A, Dupraz M, Gómez-Díaz E, Diatta G, Dayo GK, Adakal H, Zoungrana S, Vial L, Chevillon C (2015a) The recent evolution of a maternally-inherited endosymbiont of ticks led to the emergence of the Q Fever pathogen, Coxiella burnetii. PLoS Pathog 11:e1004892. doi: 10.1371/journal.ppat.1004892, eCollection 2015CrossRefPubMedPubMedCentralGoogle Scholar
  14. Duron O, Sidi-Boumedine K, Rousset E, Moutailler S, Jourdain E (2015b) The importance of ticks in Q fever transmission: what has (and has not) been demonstrated? Trends Parasitol 31:536–552. doi: 10.1016/j.pt.2015.06.014 CrossRefPubMedGoogle Scholar
  15. Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, Richards FF, Beard CB (1997) Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci U S A 94:3274–3278CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gottlieb Y, Lalzer I, Klasson L (2015) Distinctive genome reduction rates revealed by genomic analyses of two Coxiella-like endosymbionts in ticks. Genome Biol Evol 28:1779–1796. doi: 10.1093/gbe/evv108 CrossRefGoogle Scholar
  17. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 30. Syst Biol 59:307–321. doi: 10.1093/sysbio/syq010 CrossRefPubMedGoogle Scholar
  18. Hosokawa T, Koga R, Kikuchi Y, Meng XY, Fukatsu T (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci U S A 107:769–774. doi: 10.1073/pnas.0911476107 CrossRefPubMedGoogle Scholar
  19. Jasinskas A, Zhong J, Barbour A (2007) Highly prevalent Coxiella sp bacterium in the tick vector Amblyomma americanum. Appl Environ Microbiol 73:334–336. doi: 10.1128/AEM.02009-06 CrossRefPubMedGoogle Scholar
  20. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132CrossRefGoogle Scholar
  21. Kirkness EF, Haas BJ, Sun WL, Braig HR, Perotti MA, Clark JM, Lee SH, Robertson HM, Kennedy RC, Elhaik E, Gerlach D, Kriventseva EV, Elsik CG, Graur D, Hill CA, Veenstra JA, Walenz B, Tubío JM, Ribeiro JM, Rozas J, Johnston JS, Reese JT, Popadic A, Tojo M, Raoult D, Reed DL, Tomoyasu Y, Kraus E, Mittapalli O, Margam VM, Li HM, Meyer JM, Johnson RM, Romero-Severson J, Vanzee JP, Alvarez-Ponce D, Vieira FG, Aguadé M, Guirao-Rico S, Anzola JM, Yoon KS, Strycharz JP, Unger MF, Christley S, Lobo NF, Seufferheld MJ, Wang N, Dasch GA, Struchiner CJ, Madey G, Hannick LI, Bidwell S, Joardar V, Caler E, Shao R, Barker SC, Cameron S, Bruggner RV, Regier A, Johnson J, Viswanathan L, Utterback TR, Sutton GG, Lawson D, Waterhouse RM, Venter JC, Strausberg RL, Berenbaum MR, Collins FH, Zdobnov EM, Pittendrigh BR (2010) Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci U S A 107:12168–12173CrossRefPubMedPubMedCentralGoogle Scholar
  22. Klyachko O, Stein BD, Grindle N, Clay K, Fuqua C (2007) Localization and visualization of a Coxiella-type symbiont within the lone star tick, Amblyomma americanum. Appl Environ Microbiol 73:6584–6594. doi: 10.1073/pnas.1003379107 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE, McFall-Ngai MJ (2004) Microbial factor-mediated development in a host-bacterial mutualism. Science 306:1186–1188. doi: 10.1126/science.1102218 CrossRefPubMedGoogle Scholar
  24. Lalzar I, Friedmann Y, Gottlieb Y (2014) Tissue tropism and vertical transmission of Coxiella in Rhipicephalus sanguineus and Rhipicephalus turanicus ticks. Environ Microbiol 16:3657–3668. doi: 10.1111/1462-2920.12455 CrossRefPubMedGoogle Scholar
  25. Machado-Ferreira E, Piesman J, Zeidner NS, Soares CAG (2009) Francisella-like endosymbiont DNA and Francisella tularensis virulence related genes in Brazilian ticks (Acari: Ixodidae). J Med Entomol 46:369–374, doi: 10.1603/033.046.0224
  26. Machado-Ferreira E, Dietrich G, Hojgaard A, Levin M, Piesman J, Zeidner NS, Soares CAG (2011) Coxiella symbionts in the Cayenne tick Amblyomma cajennense. Microb Ecol 62:134–142. doi: 10.1007/s00248-011-9868-x CrossRefPubMedGoogle Scholar
  27. Maurin M, Raoult D (1999) Q fever. Clin Microbiol Rev 12:518–553PubMedPubMedCentralGoogle Scholar
  28. Medlock J, Atkins KE, Thomas DN, Aksoy S, Galvani AP (2013) Evaluating paratransgenesis as a potential control strategy for African trypanosomiasis. PLoS Negl Trop Dis 7:e2374. doi: 10.1371/journal.pntd.0002374 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, Van den Hurk AF, Ryan PA, O’Neill SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium. Cell 139:1268–1278. doi: 10.1016/j.cell.2009.11.042 CrossRefPubMedGoogle Scholar
  30. Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 10: inference of RNA alignments. Bioinformatics 25:1335–1337. doi: 10.1093/bioinformatics/btp157 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Noda H, Munderloh UG, Kurtti TJ (1997) Endosymbionts of ticks and their relationship to Wolbachia spp and tick-borne pathogens of humans and animals. Appl Environ Microbiol 63:3926–3932PubMedPubMedCentralGoogle Scholar
  32. Oliver KM, Moran NA, Hunter MS (2006) Costs and benefits of a superinfection of facultative symbionts in aphids. Proc Biol Sci 273:1273–1280. doi: 10.1098/rspb.2005.3436 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Parola P, Raoult D (2001) Tick-borne bacterial disease in humans: an emerging infectious threat. Clin Infect Dis 32:897–928. doi: 10.1086/319347 CrossRefPubMedGoogle Scholar
  34. Piel J (2009) Metabolites from symbiotic bacteria. Nat Prod Rep 26:338–362. doi: 10.1039/b703499g CrossRefPubMedGoogle Scholar
  35. Russell JA, Moran NA (2006) Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc Biol Sci 273:603–610. doi: 10.1098/rspb.2005.3348 CrossRefPubMedGoogle Scholar
  36. Scoles GA (2004) Phylogenetic analysis of the Francisella-like endosymbiont of Dermacentor ticks. J Med Entomol 41:277–286, doi: 10.1603/0022-2585-41.3.277
  37. Simser JA, Palmer AT, Fingerle V, Wilske B, Kurtti TJ, Munderloh UG (2002) Rickettsia monacensis sp nov, a spotted fever group Rickettsia, from ticks (Ixodes ricinus) collected in an European city park. Appl Environ Microbiol 68:4559–4566. doi: 10.1128/AEM.68.9.4559-4566.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Smith DJW (1940) Studies of the epidemiology of Q fever. The transmission of Q fever by the ticks Haemaphisalis humerosa. Aust J Exp Biol Med Sci 18:103–118CrossRefGoogle Scholar
  39. Smith DJW (1941) Studies of the epidemiology of Q fever. The transmission of Q fever by the ticks Rhipicephalus sanguineus. Aust J Exp Biol Med Sci 19:119–122CrossRefGoogle Scholar
  40. Smith DJW (1942) Studies of the epidemiology of Q fever. The transmission of Q fever by the ticks Ixodes holociclus. Aust J Exp Biol Med Sci 20:213–217CrossRefGoogle Scholar
  41. Smith TA, Driscoll T, Gillespie JJ, Raghavan R (2015) A Coxiella-like endosymbiont is a potential vitamin source for the Lone Star Tick. Genome Biol Evol 23:831–838. doi: 10.1093/gbe/evv016 CrossRefGoogle Scholar
  42. Zhong J, Jasinskas A, Barbour AG (2007) Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS One 2:e4, doi: 10.1371/journal.pone.0000405

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Erik Machado-Ferreira
    • 1
  • Vinicius F. Vizzoni
    • 1
  • Emilia Balsemão-Pires
    • 1
  • Leonardo Moerbeck
    • 2
  • Gilberto S. Gazeta
    • 2
  • Joseph Piesman
    • 3
  • Carolina M. Voloch
    • 1
  • Carlos A. G. Soares
    • 1
    Email author
  1. 1.Departamento de Genética, Instituto de BiologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto Oswaldo Cruz–FioCruzRio de JaneiroBrazil
  3. 3.Bioagricultural Sciences & Pest ManagementColorado State UniversityFort CollinsUSA

Personalised recommendations