Advertisement

Microbiota from Rhabditis regina may alter nematode entomopathogenicity

Abstract

Here we report the presence of the entomopathogenic nematode Rhabditis (Rhabditoides) regina affecting white grubs (Phyllophaga sp. and Anomala sp.) in Mexico and R. regina-associated bacteria. Bioassays were performed to test the entomopathogenic capacity of dauer and L2 and L3 (combined) larval stages. Furthermore, we determined the diversity of bacteria from laboratory nematodes cultivated for 2 years (dauer and L2–L3 larvae) and from field nematodes (dauer and L2–L3 larvae) in addition to the virulence in Galleria mellonella larvae of some bacterial species from both laboratory and field nematodes. Dauer and non-dauer larvae of R. regina killed G. mellonella. Bacteria such as Serratia sp. (isolated from field nematodes) and Klebsiella sp. (isolated from larvae of laboratory and field nematodes) may explain R. regina entomopathogenic capabilities. Different bacteria were found in nematodes after subculturing in the laboratory suggesting that R. regina may acquire bacteria in different environments. However, there were some consistently found bacteria from laboratory and field nematodes such as Pseudochrobactrum sp., Comamonas sp., Alcaligenes sp., Klebsiella sp., Acinetobacter sp., and Leucobacter sp. that may constitute the nematode microbiome. Results showed that some bacteria contributing to entomopathogenicity may be lost in the laboratory representing a disadvantage when nematodes are cultivated to be used for biological control.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abebe E, Jumba M, Bonner K, Gray V, Morris K, Thomas WK (2010) An entomopathogenic Caenorhabditis briggsae. J Exp Biol 213:3223–3229. doi:10.1242/jeb.043109

  2. Altschul S (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

  3. Angulo MJ (1985) Relación clima-vegetación en el estado de Guanajuato. Dissertation, Universidad Nacional Autónoma de México

  4. Bucher GE (1960) Potential bacterial pathogens of insects and their characteristics. J Insect Pathol 2:172–195

  5. Çakici FÖ, Sevim A, Demirbag Z, Demir A (2014) Investigating internal bacteria of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) larvae and some Bacillus strains as biocontrol agents. Turk J Agric For 38:99–110. doi:10.3906/tar-1302-65

  6. Chansang U, Mulla MS, Chantaroj S, Sawanpanyalert P (2010) The eye fly Siphunculina funicola (Diptera: Chloropidae) as a carrier of pathogenic bacteria in Thailand. Se Asian J Trop Med 41:61–71

  7. Ciche TA, Darby C, Ehlers RU, Forst S, Goodrich-Blair H (2006) Dangerous liaisons: the symbiosis of entomopathogenic nematodes and bacteria. Biol Cont 38:22–46. doi:10.1016/j.biocontrol.2005.11.016

  8. Díaz de Rienzo MD, Stevenson P, Marchant R, Banat IM (2015) Antibacterial properties of biosurfactants against selected gram positive and negative bacteria. FEMS Microbiol Lett 363:Fnv224. doi:10.1093/femsle/fnv224

  9. Dillman AR, Sternberg PW (2012) Entomopathogenic nematodes. Curr Biol 22:R430–R431. doi:10.1016/j.cub.2012.03.047

  10. Dillman AR, Chaston JM, Adams BJ, Ciche TA, Goodrich-Blair H, Stock SP, Sternberg PW (2012) An entomopathogenic nematode by any other name. PLoS Pathog 8:e1002527. doi:10.1371/journal.ppat.1002527

  11. Enríquez-Vara JN, Córdoba-Aguilar A, Guzmán-Franco AW, Alatorre-Rosas R, Contreras-Garduño J (2012) Is survival after pathogen exposure explained by host’s immune strength? A test with two species of white grubs (Coleoptera: Scarabaeidae) exposed to fungal infection. Enviromen Entomol 41:959–965. doi:10.1603/EN12011

  12. Espelund M, Klaveness D (2014) Botulism outbreaks in natural environments—an update. Front Microbiol 5:1–7. doi:10.3389/fmicb.2014.00287

  13. Faulde M, Spiesberger M (2013) Role of the moth fly Clogmia albipunctata (Diptera: Psychodinae) as a mechanical vector of bacterial pathogens in German hospitals. J Hosp Infect 83:51–60. doi:10.1016/j.jhin.2012.09.019

  14. Forst S, Clarke DJ (2002) Bacteria–nematode symbiosis. In: Gaugler R (ed) Entomopathogenic nematology. CABI, New York, pp 57–78

  15. Goater TM, Cameron P, Goater CP, Esch GW (2014) Parasitism. The diversity and ecology of animal parasites, 2nd edn. Cambridge University Press, New York

  16. Gottlieb Y, Lavy E, Kaufman M, Markovics A, Ghanim M, Aroch I (2012) A novel bacterial symbiont in the nematode Spirocerca lupi. BMC Microbiol 12:133–139. doi:10.1186/1471-2180-12-133

  17. Gouge DH, Snyder JL (2006) Temporal association of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) and bacteria. J Invertebr Pathol 91:147–157. doi:10.1016/j.jip.2005.12.003

  18. Gupta AK, Nayduch D, Verma P, Shah B, Ghate HV, Patole MS, Shouche YS (2012) Phylogenetic characterization of bacteria in the gut of house flies (Musca domestica L.). FEMS Microbiol Ecol 79:581–593. doi:10.1111/j.1574-6941.2011.01248.x

  19. Guzmán-Franco AW, Hernández-López J, Enríquez-Vara JN, Alatorre-Rosas R, Tamayo-Mejía F, Ortega-Arenas LD (2011) Susceptibility of Phyllophaga polyphylla and Anomala cincta larvae to Beauveria bassiana and Metarhizium anisopliae isolates, and the interaction with soil properties. BioControl 57:553–563

  20. Hill KK, Smith TJ, Helma CH, Ticknor LO, Foley BT, Svensson RT, Brown JL, Jonhnson EA, Smith LA, Okinaka RT, Jackson PJ, Marks JD (2007) Genetic diversity among botulinum neurotoxin-producing clostridial strains. J Bacteriol 189:818–832. doi:10.1128/JB.01180-06

  21. Hodgkin J, Partridge FA (2008) Caenorhabditis elegans meets microsporidia: the nematode killers from Paris. PLoS Biol 6:e1000005. doi:10.1371/journal.pbio.1000005

  22. Hu PJ (2007) Dauer, WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook. 1.144. 1

  23. Jaffe K, Caetano FH, Sánchez P, Hernández JV, Caraballo L, Vitelli-Flores J, Monsalve W, Dorta B, Lemoine VR (2001) Sensitivity of ant (Cephalotes) colonies and individuals to antibiotics implies feeding symbiosis with gut microorganisms. Can J Zool 79:1120–1124. doi:10.1139/z01-079

  24. Jafra S, Przysowa J, Czajkowski R, Michta A, Garbeva P, Van der Wolf JM (2006) Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. Can J Microbiol 52:1006–1015. doi:10.1139/w06-062

  25. Kämpfer P, Rosselló-Mora R, Scholz HC, Welinder-Olsson C, Falsen E, Busse HJ (2006) Description of Pseudochrobactrum gen. nov., with the two species Pseudochrobactrum asaccharolyticum sp. nov. and Pseudochrobactrum saccharolyticum sp. nov. Int J Syst Evol Microbiol 56:1823–1829. doi:10.1099/ijs.0.64256-0

  26. Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206. doi:10.1146/annurev.en.38.010193.001145

  27. Kleinbaum DG, Klein M (2006) Survival analysis: a self-learning text, 2nd edn. Springer Science & Business Media, New York

  28. Kuzina LV, Peloquin JJ, Vacek DC, Miller TA (2001) Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae). Curr Microbiol 42:290–294. doi:10.1007/s002840110219

  29. Levin BR (1996) The evolution and maintenance of virulence in microparasites. Emerg Infec Dis 2:93–102. doi:10.3201/eid0202.960203

  30. Lewis EE, Clarke DJ (2012) Nematodes parasites and entomopathogens. In: Vega FE, Kaya HK (eds) Insect pathology. Academic, Amsterdam, pp 395–424

  31. Li P, Dai C, Bao H, Chen L, Gao D, Wang G, Wang J, Wang H, Yedid G, Zhang K (2015) A new species of Pristionchus (Rhabditida: Diplogastridae) and its bacterial symbiont from Yixing, China. J Nematol 47:190–197

  32. Liu J, Berry RE, Moldenke AF (1997) Phylogenetic relationships of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) inferred from partial 18S rRNA gene sequences. J Invertebr Pathol 69:246–252. doi:10.1006/jipa.1997.4657

  33. Muir RE, Tan MW (2007) Leucobacter chromiireducens subsp. solipictus subsp. nov., a pigmented bacterium isolated from the nematode Caenorhabditis elegans, and emended description of L. chromiireducens. Int J Syst Evol Microbiol 57:2770–2776. doi:10.1099/ijs.0.64822-0

  34. Paramasiva I, Shouche Y, Kulkarni GJ, Krishnayya PV, Akbar SM, Sharma HC (2014) Diversity in gut microflora of Helicoverpa armigera populations from different regions in relation to biological activity of Bacillus thuringiensis δ-endotoxin Cry1Ac. Arch Insect Biochem 87:201–213. doi:10.1002/arch.21190

  35. Park HW, Kim YO, Ha JS, Youn SH, Kim HH, Bilgrami AL, Shin CS (2011) Effects of associated bacteria on the pathogenicity and reproduction of the insect-parasitic nematode Rhabditis blumi (Nematoda: Rhabditida). Can J Microbiol 57:750–758. doi:10.1139/w11-067

  36. Petersen C, Hermann RJ, Barg MC, Schalkowski R, Dirksen P, Barbosa C, Schulenburg H (2015) Travelling at a slug’s pace: possible invertebrate vectors of Caenorhabditis nematodes. BMC Ecol 15:19. doi:10.1186/s12898-015-0050-z

  37. Podgwaite JD, D’Amico V, Zerillo RT, Schoenfeldt H (2013) Bacteria associated with larvae and adults of the Asian longhorned beetle (Coleoptera: Cerambycidae). J Entomol Sci 48:128–138

  38. Poinar GO (2011) The evolutionary history of nematodes—as revealed in stone, amber and mummies. Nematology monographs and perspectives 9. Brill, Leiden, p 429

  39. Priya NG, Ojha A, Kajla MK, Raj A, Rajagopal R (2012) Host plant induced variation in gut bacteria of Helicoverpa armigera. PLoS One 7:e30768. doi:10.1371/journal.pone.0030768

  40. Quiroz-Castañeda RE, Mendoza-Mejía A, Obregón-Barboza V, Martínez-Ocampo F, Hernández-Mendoza A, Martínez-Garduño F, Guillén-Solis G, Sánchez-Rodríguez F, Peña-Chora G, Ortíz-Hernández, Gaytán-Colín P, Dantán-González E (2015) Identification of a new Alcaligenes faecalis strain MOR02 and assessment of its toxicity and pathogenicity to insects. BioMed Res Int 2015: 10. doi:10.1155/2015/570243

  41. Rae R, Riebesell M, Dinkelacker I, Wang Q, Herrmann M, Weller AM, Dieterich C, Sommer RJ (2008) Isolation of naturally associated bacteria of necromenic Pristionchus nematodes and fitness consequences. J Exp Biol 211:1927–1936. doi:10.1242/jeb.014944

  42. Roriz M, Santos C, Vasconcelos MW (2011) Population dynamics of bacteria associated with different strains of the pine wood nematode Bursaphelenchus xylophilus after inoculation in maritime pine (Pinus pinaster). Exp Parasitol 128:357–364. doi:10.1016/j.exppara.2011.04.008

  43. San-Blas E, Gowen SR, Pembroke B (2008) Scavenging or infection? Possible host choosing by entomopathogenic nematodes. Nematology 10:251–259. doi:10.1163/156854108783476359

  44. Schulte F, Poinar GO (1991) Description of Rhabditis (Rhabditoides) regina n. sp. (Nematoda: Rhabditidae) from the body cavity of beetle larvae in Guatemala. Rev de Nématologie 14:151–156

  45. Stasiuk SJ, Scott MJ, Grant WN (2012) Developmental plasticity and the evolution of parasitism in an unusual nematode, Parastrongyloides trichosuri. EvoDevo 3:1–14. doi:10.1186/2041-9139-3-1

  46. Stock SP (2015) Diversity, biology and evolutionary relationships. In: Campos-Herrera R (ed) Nematode pathogenesis of insects and other pests. Springer, New York, pp 3–27

  47. Stock SP, Goodrich-Blair HG (2008) Entomopathogenic nematodes and their bacterial symbionts: the inside out of a mutualistic association. Symbiosis (Rehovot) 46:65–75

  48. Tambong JT (2013) Phylogeny of bacteria isolated from Rhabditis sp. (Nematoda) and identification of novel entomopathogenic Serratia marcescens strains. Curr Microbiol 66:138–144. doi:10.1007/s00284-012-0250-0

  49. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

  50. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

  51. Torres-Barragan A, Suazo A, Buhler WG, Cardoza YJ (2011) Studies on the entomopathogenicity and bacterial associates of the nematode Oscheius carolinensis. Biol Control 59:123–129. doi:10.1016/j.biocontrol.2011.05.020

  52. Tsukamura M, Mizuno S (1972) A new species of rapidly growing scotochromogenic mycobacteria, Mycobacterium neoaurum. Med Biol (Tokyo) 85:229–233

  53. Vaz-Moreira I, Novo A, Hantsis-Zacharov E, Lopes AR, Gomila M, Nunes OC, Manaia CM, Halpern M (2011) Acinetobacter rudis sp. nov. isolated from raw milk and raw wastewater. Int J Syst Evol Microbiol 61:2837–2843. doi:10.1099/ijs.0.027045-0

  54. Vicente CS, Nascimento F, Espada M, Mota M, Oliveira S (2011) Bacteria associated with the pinewood nematode Bursaphelenchus xylophilus collected in Portugal. Antonie Van Leeuwenhoek 100:477–481. doi:10.1007/s10482-011-9602-1

  55. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

  56. Wright ES, Yilmaz S, Noguera DR (2012) DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. App Environ Microb 78:717–725. doi:10.1128/AEM.06516-11

  57. Yoon BK, Jackman JA, Kim MC, Cho NJ (2015) Spectrum of membrane morphological responses to antibacterial fatty acids and related surfactants. Langmuir 31:10223–10232. doi:10.1021/acs.langmuir.5b02088

  58. Zhang C, Liu J, Xu M, Sun J, Yang S, An X, Gao G, Lin M, Lai R, He Z, Wu Y, Zhang K (2008) Heterorhabditidoides chongmingensis gen. nov., sp. nov. (Rhabditida: Rhabditidae), a novel member of the entomopathogenic nematodes. J Invertebr Pathol 98:153–168. doi:10.1016/j.jip.2008.02.011

Download references

Acknowledgments

One anonymous reviewer and Dr. Bill Chobotar provided substantial comments to improve the paper. We thank Jhony Navat Enriquez-Vara and Ángel García Rivera for helping to collect white grubs, Michael Dunn for reading the manuscript, and A. Vera-Ponce de León and V. Higareda-Alvear for technical advice. Juan Carlos Torrez-Guzmán kindly identified Serratia and Metarhizium. The project was financed by Consejo Nacional de Ciencia y Tecnología (CONACyT, project 19660, LN-250996). A postdoctoral grant was provided by CONACyT to JGJC (Convocatory 290807; CVU 204973).

Author information

Correspondence to Jesús Guillermo Jiménez-Cortés or Jorge Contreras-Garduño.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

R. regina inside a white grub´s leg which was collected from the field and maintained under sterile conditions. (MP4 65249 kb)

Supplementary video S1

R. regina inside a white grub´s leg which was collected from the field and maintained under sterile conditions. (MP4 65249 kb)

Below is the link to the electronic supplementary material.

Fig. S1

White grubs infected naturally by a) Serratia sp. and b) Metarhizium sp. (DOC 12275 kb)

Table S1

Bacteria found in R. regina and previously registered in different species of nematodes related to entomopathogens, parasites, and soil or plant root-feeders. 1 Kämpfer et al. 2006; 2 Jaffe et al. 2001; 3 Faulde et al. 2013; 4 Gottlieb et al. 2012; 5 Gupta et al. 2012; 6 Priya et al. 2012; 7 Jafra et al. 2006; 8 Park et al. 2011; 9 Quiroz-Castañeda et al. 2015; 10 Chansang et al. 2010; 11 Roriz et al. 2011; 12 Podgwaite et al. 2013; 13 Vicente et al. 2011; 14 Rae et al. 2008; 15 Torres-Barragan et al. 2011; 16 Tambong 2013; 17 Gouge and Snyder 2006; 18 Kuzina et al. 2001; 19 Vaz-Moreira et al. 2011; 20 Zhang et al. 2008; 21 Priya et al. 2012; 22 Paramasiva et al 2014; 23 Hodgkin and Partridge 2008; 24 Espelund and Klaveness 2014; 25 Muir and Tan 2007; 26 Tsukamura 1972. (DOC 676 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Cortés, J.G., Canales-Lazcano, J., Lara-Reyes, N. et al. Microbiota from Rhabditis regina may alter nematode entomopathogenicity. Parasitol Res 115, 4153–4165 (2016). https://doi.org/10.1007/s00436-016-5190-3

Download citation

Keywords

  • Symbiotic bacteria
  • Virulence
  • Nematoda
  • Entomopathogens
  • Evolutionary parasitology
  • Rhabditidae
  • Rhabditoides