Advertisement

Parasitology Research

, Volume 115, Issue 11, pp 4097–4105 | Cite as

Vermamoeba vermiformis-Aspergillus fumigatus relationships and comparison with other phagocytic cells

  • Elodie Maisonneuve
  • Estelle Cateau
  • Sihem Kaaki
  • Marie-Hélène RodierEmail author
Original Paper

Abstract

Free living amoebae (FLA) are protists ubiquitously present in the environment. Aspergillus fumigatus is a mould responsible for severe deep-seated infections, and that can be recovered in the same habitats as the FLA. By conducting coculture experiments and fungal incubation with amoebal supernatants, we report herein that Vermamoeba vermiformis, a FLA present in hospital water systems, promotes filamentation and growth of A. fumigatus. This finding is of particular importance to institutions whose water systems might harbor FLA and could potentially be used by immunocompromised patients. Also, the relationships between V. vermiformis and A. fumigatus were compared to those between this fungus and two other phagocytic cells: Acanthamoeba castellanii, another FLA, and macrophage-like THP-1 cells. After 4 h of coincubation, the percentages of the three phagocytic cell types with adhered conidia were similar, even though the types of receptors between FLA and macrophagic cell seemed different. However, the percentage of THP-1 with internalized conidia was considerably lower (40 %) in comparison with the two other cell types (100 %). Thus, this study revealed that interactions between A. fumigatus and these three phagocytic cell types show similarities, even though it is premature to extrapolate these results to interpret relationships between A. fumigatus and macrophages.

Keywords

Aspergillus fumigatus Vermamoeba vermiformis Free-living amoebae Macrophages 

Notes

Acknowledgments

The authors are grateful to Jeffrey Arsham for revising the English text.

References

  1. Alsam S, Sissons J, Dudley R, Khan NA (2005) Mechanisms associated with Acanthamoeba castellanii (T4) phagocytosis. Parasitol Res 96:402–409. doi: 10.1007/s00436-005-1401-z CrossRefPubMedGoogle Scholar
  2. Anacarso I, Guerrieri E, Bondi M, de Niederhäusern S, Iseppi R, Sabia C, Contri M, Borella P, Messi P (2010) Influence of Legionella pneumophila and other water bacteria on the survival and growth of Acanthamoeba polyphaga. Arch Microbiol 192:877–882. doi: 10.1007/s00203-010-0618-0 CrossRefPubMedGoogle Scholar
  3. Anaissie EJ, Stratton SL, Dignani MC, Lee CK, Mahfouz TH, Rex JH, Summerbell RC, Walsh TJ (2002) Cleaning patient shower facilities: a novel approach to reducing patient exposure to aerosolized Aspergillus species and other opportunistic molds. Clin Infect Dis Off Publ Infect Dis Soc Am 35:E86–E88. doi: 10.1086/342305 CrossRefGoogle Scholar
  4. Anaissie EJ, Stratton SL, Dignani MC, Lee CK, Summerbell RC, Rex JH, Monson TP, Walsh TJ (2003) Pathogenic molds (including Aspergillus species) in hospital water distribution systems: a 3-year prospective study and clinical implications for patients with hematologic malignancies. Blood 101:2542–2546. doi: 10.1182/blood-2002-02-0530 CrossRefPubMedGoogle Scholar
  5. Araujo R, Amorim A, Gusmão L (2010) Genetic diversity of Aspergillus fumigatus in indoor hospital environments. Med Mycol 48:832–838. doi: 10.3109/13693780903575360 CrossRefPubMedGoogle Scholar
  6. Armand B, Motazedian MH, Asgari Q (2016) Isolation and identification of pathogenic free-living amoeba from surface and tap water of Shiraz City using morphological and molecular methods. Parasitol Res 115:63–68. doi: 10.1007/s00436-015-4721-7 CrossRefPubMedGoogle Scholar
  7. Cateau E, Mergey T, Kauffmann-Lacroix C, Rodier MH (2009) Relationships between free living amoebae and Exophiala dermatitidis: a preliminary study. Med Mycol 47:115–118CrossRefPubMedGoogle Scholar
  8. Cateau E, Delafont V, Hechard Y, Rodier MH (2014a) Free-living amoebae: what part do they play in healthcare-associated infections? J Hosp Infect 87:131–140. doi: 10.1016/j.jhin.2014.05.001 CrossRefPubMedGoogle Scholar
  9. Cateau E, Hechard Y, Fernandez B, Rodier MH (2014b) Free living amoebae could enhance Fusarium oxysporum growth. Fungal Ecol 8:12–17. doi: 10.1016/j.funeco.2013.12.006 CrossRefGoogle Scholar
  10. Chotirmall SH, Mirkovic B, Lavelle GM, McElvaney NG (2014) Immunoevasive Aspergillus virulence factors. Mycopathologia 178:363–370. doi: 10.1007/s11046-014-9768-y CrossRefPubMedGoogle Scholar
  11. Cosson P, Lima WC (2014) Intracellular killing of bacteria: is Dictyostelium a model macrophage or an alien? Cell Microbiol 16:816–823. doi: 10.1111/cmi.12291 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Critchley M, Bentham R (2009) The efficacy of biocides and other chemical additives in cooling water systems in the control of amoebae. J Appl Microbiol 106:784–789. doi: 10.1111/j.1365-2672.2008.04044.x CrossRefPubMedGoogle Scholar
  13. Declerck P, Behets J, De Keersmaecker B, Ollevier F (2007) Receptor-mediated uptake of Legionella pneumophila by Acanthamoeba castellanii and Naegleria lovaniensis. J Appl Microbiol 103:2697–2703. doi: 10.1111/j.1365-2672.2007.03530.x CrossRefPubMedGoogle Scholar
  14. Dementhon K, El-Kirat-Chatel S, Noël T (2012) Development of an in vitro model for the multi-parametric quantification of the cellular interactions between Candida yeasts and phagocytes. PLoS One 7:e32621. doi: 10.1371/journal.pone.0032621 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fouque E, Trouilhe M-C, Thomas V, Hartemann P, Rodier MH, Héchard Y (2012) Cellular, Biochemical, and Molecular Changes during Encystment of Free-Living Amoebae. Eukaryot Cell 11:382–387. doi: 10.1128/EC.05301-11 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Greub G, Raoult D (2004) Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 17:413–433CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gugnani HC (2003) Ecology and taxonomy of pathogenic aspergilli. Front Biosci J Virtual Libr 8:s346–s357CrossRefGoogle Scholar
  18. Hayette M-P, Christiaens G, Mutsers J, Barbier C, Huynen P, Melin P, de Mol P (2010) Filamentous fungi recovered from the water distribution system of a Belgian university hospital. Med Mycol 48:969–974. doi: 10.3109/13693781003639601 CrossRefPubMedGoogle Scholar
  19. Hillmann F, Novohradská S, Mattern DJ, Forberger T, Heinekamp T, Westermann M, Winckler T, Brakhage AA (2015) Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation. Environ Microbiol 17:2858–2869. doi: 10.1111/1462-2920.12808 CrossRefPubMedGoogle Scholar
  20. Hobson RP (2000) The effects of diffusates from the spores of Aspergillus fumigatus and A. terreus on human neutrophils, Naegleria gruberi and Acanthamoeba castellanii. Med Mycol 38:133–141CrossRefPubMedGoogle Scholar
  21. Koller R, Robin C, Bonkowski M, Ruess L, Scheu S (2013) Litter quality as driving factor for plant nutrition via grazing of protozoa on soil microorganisms. FEMS Microbiol Ecol 85:241–250. doi: 10.1111/1574-6941.12113 CrossRefPubMedGoogle Scholar
  22. Kraibooj K, Schoeler H, Svensson C-M, Brakhage AA, Fligge MT (2015) Automated quantification of the phagocytosis of Aspergillus fumigatus conidia by a novel image analysis algorithm. Front Microbiol 6:549. doi: 10.3389/fmicb.2015.00549 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lee HJ, Ryu D (2015) Advances in Mycotoxin Research: Public Health Perspectives. J Food Sci. doi: 10.1111/1750-3841.13156 Google Scholar
  24. Loret J-F, Greub G (2010) Free-living amoebae: Biological by-passes in water treatment. Int J Hyg Environ Health 213:167–175. doi: 10.1016/j.ijheh.2010.03.004 CrossRefPubMedGoogle Scholar
  25. Lu J, Struewing I, Vereen E, Kirby AE, Levy K, Moe C, Ashbolt N (2015) Molecular Detection of Legionella spp. and their associations with Mycobacterium spp., Pseudomonas aeruginosa and amoeba hosts in a drinking water distribution system. J Appl Microbiol. doi:  10.1111/jam.12996
  26. Ma X, Baron JL, Vikram A, Stout JE, Bibby K (2015) Fungal diversity and presence of potentially pathogenic fungi in a hospital hot water system treated with on-site monochloramine. Water Res 71:197–206. doi: 10.1016/j.watres.2014.12.052 CrossRefPubMedGoogle Scholar
  27. Marciano-Cabral F, Cabral G (2003) Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 16:273–307CrossRefPubMedPubMedCentralGoogle Scholar
  28. Margalit A, Kavanagh K (2015) The innate immune response to Aspergillus fumigatus at the alveolar surface. FEMS Microbiol Rev 39:670–687. doi: 10.1093/femsre/fuv018 CrossRefPubMedGoogle Scholar
  29. Mattern DJ, Schoeler H, Weber J, Novohradská S, Kraibooj K, Dahse HM, Hillmann F, Valiante V, Figge MT, Brakhage AA (2015) Identification of the antiphagocytic trypacidin gene cluster in the human-pathogenic fungus Aspergillus fumigatus. Appl Microbiol Biotechnol 99:10151–10161. doi: 10.1007/s00253-015-6898-1 CrossRefPubMedGoogle Scholar
  30. Medina G, Flores-Martin S, Fonseca B, Otth C, Fernandez H (2014) Mechanisms associated with phagocytosis of Arcobacter butzleri by Acanthamoeba castellanii. Parasitol Res 113:1933–1942. doi: 10.1007/s00436-014-3842-8 CrossRefPubMedGoogle Scholar
  31. Molmeret M, Horn M, Wagner M, Santic M, Abu Kwaik Y (2005) Amoebae as training grounds for intracellular bacterial pathogens. Appl Environ Microbiol 71:20–28CrossRefPubMedPubMedCentralGoogle Scholar
  32. Montalbano Di Filippo M, Santoro M, Lovreglio P, Monno R, Capolongo C, Calia C, Fumarola L, D’Alfonso R, Berrilli F, Di Cave D (2015) Isolation and molecular characterization of free-living amoebae from different water sources in Italy. Int J Environ Res Public Health 12:3417–3427. doi: 10.3390/ijerph120403417 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Oliveira BR, Penetra A, Cardoso VV, Benoliel MJ, Barreto Crespo MT, Samson RA, Pereira VJ (2015) Biodegradation of pesticides using fungi species found in the aquatic environment. Environ Sci Pollut Res Int 22:11781–11791. doi: 10.1007/s11356-015-4472-0 CrossRefPubMedGoogle Scholar
  34. Ovrutsky AR, Chan ED, Kartalija M, Bai X, Jackson M, Gibbs S, Falkinham JO 3rd, Iseman MD, Reynolds PR, McDonnell G, Thomas V (2013) Cooccurrence of free-living amoebae and nontuberculous Mycobacteria in hospital water networks, and preferential growth of Mycobacterium avium in Acanthamoeba lenticulata. Appl Environ Microbiol 79:3185–3192. doi: 10.1128/AEM.03823-12 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pagano L, Akova M, Dimopoulos G, Herbrecht R, Drgona L, Blijlvens N (2011) Risk assessment and prognostic factors for mould-related diseases in immunocompromised patients. J Antimicrob Chemother 66(Suppl 1):i5–i14. doi: 10.1093/jac/dkq437 CrossRefPubMedGoogle Scholar
  36. Pagnier I, Valles C, Raoult D, La Scola B (2015) Isolation of Vermamoeba vermiformis and associated bacteria in hospital water. Microb Pathog 80:14–20. doi: 10.1016/j.micpath.2015.02.006 CrossRefPubMedGoogle Scholar
  37. Pearson C, Littlewood E, Douglas P, Robertson S, Gant TW, Hansell AL (2015) Exposures and health outcomes in relation to bioaerosol emissions from composting facilities: a systematic review of occupational and community studies. J Toxicol Environ Health B Crit Rev 18:43–69. doi: 10.1080/10937404.2015.1009961 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pereira VJ, Marques R, Marques M, Benoliel MJ, Barreto Crespo MT (2013) Free chlorine inactivation of fungi in drinking water sources. Water Res 47:517–523. doi: 10.1016/j.watres.2012.09.052 CrossRefPubMedGoogle Scholar
  39. Rhoads WJ, Ji P, Pruden A, Edwards MA (2015) Water heater temperature set point and water use patterns influence Legionella pneumophila and associated microorganisms at the tap. Microbiome 3:67. doi: 10.1186/s40168-015-0134-1 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rohr U, Weber S, Michel R, Selenka F, Wilhelm M (1998) Comparison of free-living amoebae in hot water systems of hospitals with isolates from moist sanitary areas by identifying genera and determining temperature tolerance. Appl Env Microbiol 64:1822–1824Google Scholar
  41. Rosenberg K, Bertaux J, Krome K, Hartmann A, Scheu S, Bonkowski M (2009) Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J 3:675–684. doi: 10.1038/ismej.2009.11 CrossRefPubMedGoogle Scholar
  42. Salvatore Bozzaro CB (2008) Chapter 6 Phagocytosis and Host-Pathogen Interactions in Dictyostelium with a Look at Macrophages. Int Rev Cell Mol Biol 271:253–300. doi: 10.1016/S1937-6448(08)01206-9 CrossRefPubMedGoogle Scholar
  43. Sammon NB, Harrower KM, Fabbro LD, Reed RH (2010) Incidence and distribution of microfungi in a treated municipal water supply system in sub-tropical Australia. Int J Environ Res Public Health 7:1597–1611. doi: 10.3390/ijerph7041597 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sammon NB, Harrower KM, Fabbro LD, Reed RH (2011) Three potential sources of microfungi in a treated municipal water supply system in sub-tropical Australia. Int J Environ Res Public Health 8:713–732. doi: 10.3390/ijerph8030713 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Schuster FL (2002) Cultivation of pathogenic and opportunistic free-living amebas. Clin Microbiol Rev 15:342–354CrossRefPubMedPubMedCentralGoogle Scholar
  46. Scott AJ, Woods JP (2000) Monitoring internalization of Histoplasma capsulatum by mammalian cell lines using a fluorometric microplate assay. Med Mycol 38:15–22CrossRefPubMedGoogle Scholar
  47. Siddiqui R, Khan NA (2012) Acanthamoeba is an evolutionary ancestor of macrophages: a myth or reality? Exp Parasitol 130:95–97. doi: 10.1016/j.exppara.2011.11.005 CrossRefPubMedGoogle Scholar
  48. Slesiona S, Gressler M, Mihlan M, Zaehle C, Schaller M, Barz D, Hube B, Jacobsen ID, Brock M (2012) Persistence versus escape: Aspergillus terreus and Aspergillus fumigatus employ different strategies during interactions with macrophages. PLoS One 7:e31223. doi: 10.1371/journal.pone.0031223 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Steenbergen JN, Shuman HA, Casadevall A (2001) Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc Natl Acad Sci U S A 98:15245–15250CrossRefPubMedPubMedCentralGoogle Scholar
  50. Steenbergen JN, Nosanchuk JD, Malliaris SD, Casadevall A (2004) Interaction of Blastomyces dermatitidis, Sporothrix schenckii, and Histoplasma capsulatum with Acanthamoeba castellanii. Infect Immun 72:3478–3488. doi: 10.1128/IAI.72.6.3478-3488.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Thomas JM, Ashbolt NJ (2011) Do free-living amoebae in treated drinking water systems present an emerging health risk? Environ Sci Technol 45:860–869. doi: 10.1021/es102876y CrossRefPubMedGoogle Scholar
  52. Thomas V, Herrera-Rimann K, Blanc DS, Greub G (2006) Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl Environ Microbiol 72:2428–2438CrossRefPubMedPubMedCentralGoogle Scholar
  53. Van Waeyenberghe L, Pasmans F, D’Herde K, Ducatelle R, Favoreel H, Li SJ, Haesebrouck F, Martel A (2012) Germination of Aspergillus fumigatus inside avian respiratory macrophages is associated with cytotoxicity. Vet Res 43:32. doi: 10.1186/1297-9716-43-32 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Van Waeyenberghe L, Baré J, Pasmans F, Claeys M, Bert W, Haesebrouck F, Houf K, Martel A (2013) Interaction of Aspergillus fumigatus conidia with Acanthamoeba castellanii parallels macrophage–fungus interactions. Environ Microbiol Rep 5:819–824. doi: 10.1111/1758-2229.12082 CrossRefPubMedGoogle Scholar
  55. Vanessa B, Virginie M, Nathalie Q, Marie-Hélène R, Christine I (2012) Hartmannella vermiformis can promote proliferation of Candida spp. in tap-water. Water Res 46:5707–5714. doi: 10.1016/j.watres.2012.07.054 CrossRefPubMedGoogle Scholar
  56. Vohník M, Burdíková Z, Albrechtová J, Vosátka M (2009) Testate amoebae (Arcellinida and Euglyphida) vs. Ericoid mycorrhizal and DSE fungi: a possible novel interaction in the mycorrhizosphere of ericaceous plants? Microb Ecol 57:203–214. doi: 10.1007/s00248-008-9402-y CrossRefPubMedGoogle Scholar
  57. Watanabe A, Kamei K, Sekine T, Higurashi H, Hashimoto Y, Ochiai E, Nishimura K (2004) Cytotoxic substances from Aspergillus fumigatus in oxygenated or poorly oxygenated environment. Mycopathologia 158:1–7CrossRefPubMedGoogle Scholar
  58. Yan L, Cerny RL, Cirillo JD (2004) Evidence that hsp90 is involved in the altered interactions of Acanthamoeba castellanii variants with bacteria. Eukaryot Cell 3:567–578. doi: 10.1128/EC.3.3.567-578.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Yli-Pirilä T, Kusnetsov J, Hirvonen M-R, Seuri M, Nevalainen A (2006) Effects of amoebae on the growth of microbes isolated from moisture-damaged buildings. Can J Microbiol 52:383–390. doi: 10.1139/w05-131 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipe Microbiologie de l’EauUniversité de PoitiersPoitiers CedexFrance
  2. 2.Laboratoire de parasitologie et mycologieCHU La MilètriePoitiers CedexFrance
  3. 3.Laboratoire d’Anatomie et Cytologie PathologiquesCHU La MilètriePoitiers CedexFrance

Personalised recommendations