Advertisement

Parasitology Research

, Volume 115, Issue 7, pp 2705–2713 | Cite as

A method to identify protein antigens of Dermanyssus gallinae for the protection of birds from poultry mites

  • Gustavo R. Makert
  • Susanne Vorbrüggen
  • Maria-Elisabeth Krautwald-Junghanns
  • Matthias Voss
  • Kai Sohn
  • Tilo Buschmann
  • Sebastian UlbertEmail author
Original Paper

Abstract

The poultry red mite (PRM) Dermanyssus gallinae causes high economic losses and is among the most important parasites in poultry farming worldwide. Different chemical, physical, and biological strategies try to control the expansion of PRM. However, effective solutions to this problem still have to be found. Here, we present a method for the development of an immunological control strategy, based on the identification of mite protein antigens which elicit antibodies with anti-mite activity in the immunized chicken. Hens were immunized with different PRM protein extracts formulated with two different adjuvants, and IgY-antibodies were isolated from the eggs. A PRM in vitro feeding assay which used chicken blood spiked with these IgY-preparations was used to detect antibodies which caused PRM mortality. In vitro feeding of mites with IgY isolated from hens immunized with PRM extract formulated with one of the adjuvants showed a statistically significant increase in the mortality as compared to control mites. After the separation of total PRM extracts in two-dimensional gels, several protein spots were recognized by such IgY preparations. Ten protein spots were subjected to mass spectrometry (MS/MS) for the identification of the corresponding proteins. Complete protein sequences were deduced from genomic and transcriptomic assemblies derived from high throughput sequencing of total PRM DNA and RNA. The results may contribute to the development of an immunological control strategy of D. gallinae.

Keywords

Poultry mite Antigen discovery Vaccine Pest control 

Notes

Acknowledgments

We thank Steffen Jakob, Ulrike Ehlert, and Maria Aulmann for the excellent technical assistance. We also thank Drs. Jasmin Fertey and Beyene Moges Agizie for critical reading of the manuscript and support in the statistical analysis. We thank Dr. Daniela Volke (University of Leipzig) for the analysis of PRM 2D gel protein spots.

Compliance with ethical standards

Authors’ contributions

GRM and SU conceived, designed and coordinated the study. GRM performed the experiments, SV carried out the immunizations. MEKJ and MV contributed expertise in birds and poultry experiment design. KS carried out essential sequencing of PRM DNA and RNA. TB performed bioinformatics and statistical analyses. GRM and SU analyzed and interpreted the data and drafted the manuscript. All authors have read and approved the final manuscript.

Conflict of interest

This study was funded by Lohmann Tierzucht GmbH. The funding body had no role in design, collection, analysis, and interpretation of data, in the writing of the manuscript, and in the decision to submit the manuscript for publication.

References

  1. Arkle S, Harrington D, Kaiser P, Rothwell L, De Luna C, George D, Guy J, Sparagano OAE (2008) Immunological control of the poultry red mite. Ann NY Acad Sci 1149:36–40CrossRefPubMedGoogle Scholar
  2. Babu JP, Pattnaik P, Gupta N, Shrivastava A, Khan M, Rao PL (2008) Immunogenicity of a recombinant envelope domain III protein of dengue virus type-4 with various adjuvants in mice. Vaccine 26:4655–4663CrossRefPubMedGoogle Scholar
  3. Bartley K, Wright HW, Huntley JF, Manson ED, Inglis NF, McLean K, Nath M, Bartley Y, Nisbet AJ (2015) Identification and evaluation of vaccine candidate antigens from the poultry red mite (Dermanyssus gallinae). Int J Parasitol 45:819–830CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  5. Baz M, Samant M, Zekki H, Tribout-Jover P, Plante M, Lanteigne AM, Hamelin M-E, Mallett C, Papadopoulou B, Boivin G (2012) Effects of different adjuvants in the context of intramuscular and intranasal routes on humoral and cellular immune responses induced by detergent-split A/H3N2 influenza vaccines in mice. Clin Vaccine Immunol 19:209–218CrossRefPubMedPubMedCentralGoogle Scholar
  6. Birkett MA, Hassanali A, Hoglund S, Pettersson J, Pickett JA (2011) Repellent activity of catmint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites. Phytochemistry 72:109–114CrossRefPubMedGoogle Scholar
  7. Bowden TJ, Adamson K, MacLachlan P, Pert CC, Bricknell IR (2003) Long-term study of antibody response and injection-site effects of oil adjuvants in Atlantic halibut (Hippoglossus hippoglossus L.). Fish Shellfish Immunol 14:363–369CrossRefPubMedGoogle Scholar
  8. Brockis DC (1980) Mite infestations. Vet Rec 107:315–316CrossRefPubMedGoogle Scholar
  9. Carroll JF (1994) Feeding deterrence of northern fowl mites (acari: Macronyssidae) by some naturally occurring plant substances. Pestic Sci 41:203–207CrossRefGoogle Scholar
  10. Chabierski S, Makert GR, Kerzhner A, Barzon L, Fiebig P, Liebert UG, Papa A, Richner JM, Niedrig M, Diamond MS, Palù G, Ulbert S (2013) Antibody responses in humans infected with newly emerging strains of West Nile Virus in Europe. PLoS One 8:e66507. doi: 10.1371/journal.pone.0066507 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chauve C (1998) The poultry red mite Dermanyssus gallinae (De Geer, 1778): current situation and future prospects for control. Vet Parasitol 79:239–245CrossRefPubMedGoogle Scholar
  12. Chirico J, Tauson R (2002) Traps containing acaricides for the control of Dermanyssus gallinae. Vet Parasitol 110:109–116CrossRefPubMedGoogle Scholar
  13. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467CrossRefPubMedGoogle Scholar
  14. Fivaz M, Vilbois F, Pasquali C, van der Goot FG (2000) Analysis of glycosyl phosphatidylinositol-anchored proteins by two-dimensional gel electrophoresis. Electrophoresis 21:3351–3356CrossRefPubMedGoogle Scholar
  15. George DR, Masic D, Sparagano OAE, Guy JH (2009) Variation in chemical composition and acaricidal activity against Dermanyssus gallinae of four eucalyptus essential oils. Exp Appl Acarol 48:43–50CrossRefPubMedGoogle Scholar
  16. Gibb S (2014) MALDIquantForeign: Import/Export routines for MALDIquant. ChicagoGoogle Scholar
  17. Gibb S, Strimmer K (2012) MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics 28:2270–2271CrossRefPubMedGoogle Scholar
  18. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson D, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652CrossRefPubMedPubMedCentralGoogle Scholar
  19. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood P, Bowden J, Couger M, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RG, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512CrossRefPubMedGoogle Scholar
  20. Harrington D, Canales M, de la Fuente J, de Luna C, Robinson K, Guy J, Sparagano OAE (2009a) Immunisation with recombinant proteins subolesin and Bm86 for the control of Dermanyssus gallinae in poultry. Vaccine 27:4056–4063CrossRefPubMedGoogle Scholar
  21. Harrington D, El Din HM, Guy J, Robinson K, Sparagano OAE (2009b) Characterization of the immune response of domestic fowl following immunization with proteins extracted from Dermanyssus gallinae. Vet Parasitol 160:285–294CrossRefPubMedGoogle Scholar
  22. Herbert WJ (1967) Some investigations into the mode of action of the water-in-mineral-oil emulsion antigen adjuvants. In: Symposium Series of Immunobiology Standardization, Karger, Basel, NY:213–220Google Scholar
  23. Herbert B, Galvani M, Hamdan M, Olivieri E, MacCarthy J, Pedersen S, Righetti PG (2001) Reduction and alkylation of proteins in preparation of two-dimensional map analysis: why, when, and how? Electrophoresis 22:2046–2057CrossRefPubMedGoogle Scholar
  24. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363CrossRefPubMedGoogle Scholar
  25. Johansson J, Hellman L (2007) Modifications increasing the efficacy of recombinant vaccines; marked increase in antibody titers with moderately repetitive variants of a therapeutic allergy vaccine. Vaccine 25:1676–1682CrossRefPubMedGoogle Scholar
  26. Jonsson NN, Matschoss AL, Pepper P, Green PE, Albrecht MS, Hungerford J, Ansell J (2000) Evaluation of TickGARDPLUS, a novel vaccine against Boophilus microplus, in lactating Holstein-Friesian cows. Vet Parasitol 88:275–285CrossRefPubMedGoogle Scholar
  27. Kamau LM, Wright HW, Nisbet AJ, Bowman AS (2013) Development of an RNA-interference procedure for gene knockdown in the poultry red mite, Dermanyssus gallinae: Studies on histamine releasing factor and Cathepsin-D. Afr J Biotechnol 12:1350–1356Google Scholar
  28. Kilpinen O, Steenberg T (2009) Inert dusts and their effects on the poultry red mite (Dermanyssus gallinae). Exp Appl Acarol 48:51CrossRefPubMedGoogle Scholar
  29. Kirkwood AC (1967) Anaemia in poultry infested with the red mite Dermanyssus gallinae. Vet Rec 80:514–516CrossRefPubMedGoogle Scholar
  30. Lesna I, Sabelis MW, van Niekerk TGCM, Komdeur J (2012) Laboratory tests for controlling poultry red mites (Dermanyssus gallinae) with predatory mites in small “laying hen” cages. Exp Appl Acarol 58:371–383CrossRefPubMedPubMedCentralGoogle Scholar
  31. Magnusson SE, Karlsson KH, Reimer JM, Corbach-Söhle S, Patel S, Richner JM, Nowotny N, Barzon L, Bengtsson KL, Ulbert S, Diamond MS, Stertman L (2014) Matrix-M™ adjuvanted envelope protein vaccine protects against lethal lineage 1 and 2 West Nile virus infection in mice. Vaccine 32:800–808. doi: 10.1016/j.vaccine.2013.12.030 CrossRefPubMedGoogle Scholar
  32. Marcq C, Marlier D, Beckers Y (2015) Improving adjuvant systems for polyclonal egg yolk antibody (IgY) production in laying hens in terms of productivity and animal welfare. Vet Immunol Immunopathol 165:54–63CrossRefPubMedGoogle Scholar
  33. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12CrossRefGoogle Scholar
  34. McDevitt R, Nisbet AJ, Huntley JF (2006) Ability of a proteinase inhibitor mixture to kill poultry red mite, Dermanyssus gallinae in an in vitro feeding system. Vet Parasitol 141:380–385CrossRefPubMedGoogle Scholar
  35. Moro CV, De Luna CJ, Alexander T, Guy JH, Sparagano OAE, Zenner L (2009) The poultry red mite (Dermanyssus gallinae): a potential vector of pathogenic agents. Exp Appl Acarol 48:93–104CrossRefGoogle Scholar
  36. Pohler P, Lehmann J, Veneruso V, Tomm JV, Bergen M, Lambrecht B, Kohn B, Weingart C, Seltsam A (2012) Evaluation of the tolerability and immunogenicity of UVC-irradiated autologous platelets in a dog model. Transfusion 52:2414–2426CrossRefPubMedGoogle Scholar
  37. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
  38. R Core Team: (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
  39. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277CrossRefPubMedGoogle Scholar
  40. Roohvand F, Aghasadeghi MR, Sadat SM, Budkowska A, Khabiri AR (2007) HCV core protein immunization with Montanide/CpG elicits strong Th1/Th2 and long-lived CTL responses. Biochem Biophys Res Commun 354:641–649CrossRefPubMedGoogle Scholar
  41. Sauer JR, McSwain JL, Essenberg RC (1994) Cell membrane receptors and regulation of cell function in ticks and blood-sucking insects. Int J Parasitol 24:33–52CrossRefPubMedGoogle Scholar
  42. Schicht S, Qi W, Poveda L, Strube C (2013) The predicted secretome and transmembranome of the poultry red mite Dermanyssus gallinae. Parasit Vectors 6:259CrossRefPubMedPubMedCentralGoogle Scholar
  43. Schicht S, Qi W, Poveda L, Strube C (2014) Whole transcriptome analysis of the poultry red mite Dermanyssus gallinae (De Geer, 1778). Parasitology 141:336–346CrossRefPubMedGoogle Scholar
  44. Sechi S, Chait BT (1998) Modification of cysteine residues by alkylation. A tool in peptide mapping and protein identification. Anal Chem 70:5150–5158CrossRefPubMedGoogle Scholar
  45. Sparagano OAE (2009) Control of poultry mites: where do we stand? Exp Appl Acarol 48:1–2CrossRefPubMedGoogle Scholar
  46. Sparagano OAE, Pavlićević A, Murano T, Camarda A, Sahibi H, Kilpinen O, Mul M, van Emous R, le Bouquin S, Hoel K, Cafiero MA (2009) Prevalence and key figures for the poultry red mite Dermanyssus gallinae infections in poultry farm systems. Exp Appl Acarol 48:3–10CrossRefPubMedGoogle Scholar
  47. Steenberg T, Kilpinen O (2014) Synergistic interaction between the fungus Beauveria bassiana and desiccant dusts applied against poultry red mites (Dermanyssus gallinae). Exp Appl Acarol 62:511–524CrossRefPubMedGoogle Scholar
  48. Stills HF (2005) Adjuvants and antibody production: dispelling the myths associated with Freund’s complete and other adjuvants. ILAR J 46:280–293CrossRefPubMedGoogle Scholar
  49. van Emous R (2005) Wage war against the red mite! Poultry Int 44:26–33Google Scholar
  50. Wickham H (2011) The split-apply-combine strategy for data analysis. J Stat Softw 40:1–29Google Scholar
  51. Willadsen P, Kemp DH (1988) Vaccination with ‘concealed’ antigens for tick control. Parasitol Today 4:196–198CrossRefPubMedGoogle Scholar
  52. Willadsen P, Riding GA, McKenna RV, Kemp DH, Tellam RL, Nielsen JN, Lahnstein J, Cobon GS, Gough JM (1989) Immunologic control of a parasitic arthropod. Identification of a protective antigen from Boophilus microplus. J Immunol 143:1346–1351PubMedGoogle Scholar
  53. Wright HW, Bartley K, Nisbet AJ, McDevitt RM, Sparks NH, Brocklehurst S, Huntley JF (2009) The testing of antibodies raised against poultry red mite antigens in an in vitro feeding assay; preliminary screen for vaccine candidates. Exp Appl Acarol 48:81–91CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Gustavo R. Makert
    • 1
    • 2
  • Susanne Vorbrüggen
    • 2
  • Maria-Elisabeth Krautwald-Junghanns
    • 2
  • Matthias Voss
    • 3
  • Kai Sohn
    • 4
  • Tilo Buschmann
    • 1
  • Sebastian Ulbert
    • 1
    Email author
  1. 1.Fraunhofer Institute for Cell Therapy and ImmunologyLeipzigGermany
  2. 2.Clinic for Birds and ReptilesLeipzig UniversityLeipzigGermany
  3. 3.Lohmann Tierzucht GmbHCuxhavenGermany
  4. 4.Fraunhofer Institute for Interfacial Engineering and BiotechnologyStuttgartGermany

Personalised recommendations