Advertisement

Parasitology Research

, Volume 115, Issue 5, pp 2111–2114 | Cite as

Detection of Balamuthia mandrillaris DNA in the storage case of contact lenses in Germany

  • Carsten Balczun
  • Patrick L. ScheidEmail author
Short Communication

Abstract

Acanthamoeba spp. are frequently the etiological agents of a severe form of sight-threatening keratitis, called Acanthamoeba keratitis. The contact lens storage solution of a patient with keratitis of unknown genesis was screened using our diagnostic tools to detect potentially pathogenic free-living amoebae (FLA). Culture methods and a triplex quantitative real-time polymerase chain reaction (qPCR) targeting Acanthamoeba spp., Naegleria fowleri, and Balamuthia mandrillaris were used in context of this routine screening. While no amoebae were detected by culture, qPCR specifically detected DNA of B. mandrillaris. This FLA is known as the etiological agent of a fatal form of encephalitis in humans and other mammals, Balamuthia amoebic encephalitis (BAE). A fragment of the 18S rDNA gene was amplified from the sample and showed 99 % sequence identity to B. mandrillaris sequences from GenBank. To the best of our knowledge, this is the first report of B. mandrillaris found in association with contact lenses. Although no viable amoeba was obtained by culturing efforts, the verification of B. mandrillaris DNA in the contact lens storage solution demonstrates how easily this pathogen might come into close contact with humans.

Keywords

Balamuthia mandrillaris Contact lense Quantitative real-time PCR 

Notes

Acknowledgments

We thank Sebastian Njul for excellent technical assistance and David Lam (Shaman Medical Consulting) for review and English-language editing of the article.

References

  1. Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EA, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick RS, Schoch CL, Smirnov A, Spiegel FW (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ahmad AF, Andrew PW, Kilvington S (2011) Development of a nested PCR for environmental detection of the pathogenic free-living amoeba Balamuthia mandrillaris. J Eukaryot Microbiol 58:269–271CrossRefPubMedGoogle Scholar
  3. Altschul S, Madden T, Schäffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bakardjiev A, Azimi PH, Ashouri N, Ascher DP, Janner D, Schuster FL, Visvesvara GS, Glaser C (2003) Amebic encephalitis caused by Balamuthia mandrillaris: report of four cases. Pediatr Infect Dis J 22:447–453PubMedGoogle Scholar
  5. Cabello-Vílchez AM, Reyes-Batlle M, Montalbán-Sandoval E, Martín-Navarro CM, López-Arencibia A, Elias-Letts R, Guerra H, Gotuzzo E, Martínez-Carretero E, Piñero JE, Maciver SK, Valladares B, Lorenzo-Morales J (2014) The isolation of Balamuthia mandrillaris from environmental sources from Peru. Parasitol Res 113:2509–2513CrossRefPubMedGoogle Scholar
  6. Detering H, Aebischer T, Dabrowski PW, Radonić A, Nitsche A, Renard BY, Kiderlen AF (2015) First draft genome sequence of Balamuthia mandrillaris, the causative agent of amoebic encephalitis. Genome Announc 3:e01013–e01015CrossRefPubMedPubMedCentralGoogle Scholar
  7. Finnin PJ, Visvesvara GS, Campbell BE, Fry DR, Gasser RB (2007) Multifocal Balamuthia mandrillaris infection in a dog in Australia. Parasitol Res 100:423–426CrossRefPubMedGoogle Scholar
  8. Fittipaldi M, Pino Rodriguez NJ, Adrados B, Agustí G, Peñuela G, Morató J, Codony F (2011) Discrimination of viable Acanthamoeba castellani trophozoites and cysts by propidium monoazide real-time polymerase chain reaction. J Eukaryot Microbiol 58:359–364CrossRefPubMedGoogle Scholar
  9. Greninger AL, Messacar K, Dunnebacke T, Naccache SN, Federman S, Bouquet J, Mirsky D, Nomura Y, Yagi S, Glaser C, Vollmer M, Press CA, Klenschmidt-DeMasters BK, Dominguez SR, Chiu CY (2015) Clinical metagenomic identification of Balamuthia mandrillaris encephalitis and assembly of the draft genome: the continuing case for reference genome sequencing. Genome Med 7:113CrossRefPubMedPubMedCentralGoogle Scholar
  10. Jackson BR, Kucerova Z, Roy SL, Aguirre G, Weiss J, Sriram R, Yoder J, Foelber R, Baty S, Derado G, Stramer SL, Winkelman V, Visvesvara GS (2014) Serologic survey for exposure following fatal Balamuthia mandrillaris infection. Parasitol Res 113:1305–1311CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kiderlen AF, Laube U (2004) Balamuthia mandrillaris, an opportunistic agent of granulomatous amebic encephalitis, infects the brain via the olfactory nerve pathway. Parasitol Res 94:49–52CrossRefPubMedGoogle Scholar
  12. Kiderlen AF, Radam E, Schuster FL, Adjogoua EV, Akoua-Koffi C, Leendertz FH (2010) Balamuthia and Acanthamoeba-binding antibodies in West African human sera. Exp Parasitol 126:28–32CrossRefPubMedGoogle Scholar
  13. Maetz-Rensing K, Kunze M, Zoeller M, Roos C, Kiderlen AF, Ludwig C, Kaup FJ (2011) Fatal Balamuthia mandrillaris infection in a gorilla—first case of balamuthiasis in Germany. J Med Primatol 40:437–440CrossRefGoogle Scholar
  14. Magnet A, Fenoy S, Galván AL, Izquierdo F, Rueda C, Fernandez Vadillo C, Del Aguila C (2013) A year long study of the presence of free living amoeba in Spain. Water Res 47:6966–6972CrossRefPubMedGoogle Scholar
  15. Martínez AJ, Visvesvara GS (1997) Free-living, amphizoic and opportunistic amebas. Brain Pathol 7:583–598CrossRefPubMedGoogle Scholar
  16. Nicholas K, Nicholas H, Deerfield D (1997) GeneDoc: analysis and visualization of genetic variation. Embnew News 4:14Google Scholar
  17. Niyyati M, Lorenzo-Morales J, Rezaeian M, Martin-Navarro CM, Haghi AM, Maciver SK, Valladares B (2009) Isolation of Balamuthia mandrillaris from urban dust, free of known infectious involvement. Parasitol Res 106:279–281CrossRefPubMedGoogle Scholar
  18. Page FC (1988) A new key to freshwater and soil Gymnamoebae with instructions for culture. Freshwater Biological Association, Ambleside, UKGoogle Scholar
  19. Qvarnstrom Y, Visvesvara GS, Sriram R, da Silva AJ (2006) Multiplex Real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. J Clin Microbiol 44:3589–3595CrossRefPubMedPubMedCentralGoogle Scholar
  20. Retana-Moreira L, Abrahams-Sandí E, Cabello-Vílchez AM, Reyes-Batlle M, Valladares B, Martínez-Carretero E, Piñero JE, Lorenzo-Morales J (2014) Isolation and molecular characterization of Acanthamoeba and Balamuthia mandrillaris from combination shower units in Costa Rica. Parasitol Res 113:4117–4122CrossRefPubMedGoogle Scholar
  21. Roy SL, Atkins JT, Gennuso R, Kofos D, Sriram RR, Dorlo TP, Hayes T, Qvarnstrom Y, Kucerova Z, Guglielmo BJ, Visvesvara GS (2015) Assessment of blood–brain barrier penetration of miltefosine used to treat a fatal case of granulomatous amebic encephalitis possibly caused by an unusual Balamuthia mandrillaris strain. Parasitol Res 114:4431–4439CrossRefPubMedGoogle Scholar
  22. Scheid P, Balczun C, Schaub GA (2014) Some secrets are revealed: parasitic keratitis amoebae as vectors of the scarcely described pandoraviruses to humans. Parasitol Res 113:3759–3764CrossRefPubMedGoogle Scholar
  23. Schroeder JM, Booton GC, Hay J, Niszl IA, Seal DV, Markus MB, Fuerst PA, Byers TJ (2001) Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of acanthamoebae from humans with keratitis and from sewage sludge. J Clin Microbiol 39:1903–1911CrossRefPubMedPubMedCentralGoogle Scholar
  24. Schuster FL, Visvesvara GS (2004) Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasitol 34:1001–1027CrossRefPubMedGoogle Scholar
  25. Thompson J, Gibson T, Plewniak F, Jeanmougin F, Higgins D (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 15:4876–4882CrossRefGoogle Scholar
  26. Trabelsi H, Dendana F, Sellami A, Sellami H, Cheikhrouhou F, Neji S, Makni F, Ayadi A (2012) Pathogenic free-living amoebae: epidemiology and clinical review. Pathol Biol 60:399–405CrossRefPubMedGoogle Scholar
  27. Visvesvara GS, Martínez AJ, Schuster FL, Leitch GJ, Wallace SV, Sawyer TK, Anderson M (1990) Leptomyxid ameba. A new agent of amebic meningoencephalitis in humans and animals. J Clin Microbiol 28:2750–2756PubMedPubMedCentralGoogle Scholar
  28. Visvesvara GS, Schuster FL, Martínez AJ (1993) Balamuthia mandrillaris, N. G., N. Sp., agent of amebic meningoencephalitis in humans and other animals. J Eukaryot Microbiol 40:504–514CrossRefPubMedGoogle Scholar
  29. Visvesvara GS, Moura H, Schuster FL (2007) Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol 50:1–26CrossRefPubMedGoogle Scholar
  30. Wilson MR, Shanbhag NM, Reid MJ, Singhal NS, Gelfand JM, Sample HA, Benkli B, O’Donovan BD, Ali IK, Keating MK, Dunnebacke TH, Wood MD, Bollen A, DeRisi JL (2015) Diagnosing Balamuthia mandrillaris encephalitis with metagenomic deep sequencing. Ann Neurol 78:722–730CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratory of Medical ParasitologyCentral Institute of the Bundeswehr Medical Service, KoblenzKoblenzGermany
  2. 2.IfIN, Department of Biology, Parasitology and Infection Biology Research GroupUniversity of Koblenz-LandauKoblenzGermany

Personalised recommendations