Parasitology Research

, Volume 115, Issue 4, pp 1659–1666 | Cite as

Identification of repellent odorants to the body louse, Pediculus humanus corporis, in clove essential oil

  • Takuma Iwamatsu
  • Daisuke Miyamoto
  • Hidefumi Mitsuno
  • Yoshiaki Yoshioka
  • Takeshi Fujii
  • Takeshi Sakurai
  • Yukio Ishikawa
  • Ryohei KanzakiEmail author
Original Paper


The control of body lice is an important issue for human health and welfare because lice act as vectors of disease such as typhus, relapsing fever, and trench fever. Body lice exhibit avoidance behavior to some essential oils, including clove essential oil. Therefore, odorants containing clove essential oil components may potentially be useful in the development of repellents to body lice. However, such odorants that induce avoidance behavior in body lice have not yet been identified from clove essential oil. Here, we established an analysis method to evaluate the avoidance behavior of body lice to specific odorants. The behavioral analysis of the body lice in response to clove essential oil and its constituents revealed that eugenol, a major component of clove essential oil, has strong repellent effect on body lice, whereas the other components failed to induce obvious avoidance behavior. A comparison of the repellent effects of eugenol with those of other structurally related odorants revealed possible moieties that are important for the avoidance effects to body lice. The repellent effect of eugenol to body lice was enhanced by combining it with the other major component of clove essential oil, β-caryophyllene. We conclude that a synthetic blend of eugenol and β-caryophyllene is the most effective repellent to body lice. This finding will be valuable as the potential use of eugenol as body lice repellent.


Body lice Behavior analysis Eugenol Synergistic effect 



This study was supported by Grant-in-Aid for JSPS Fellows.

Supplementary material

436_2016_4905_MOESM1_ESM.tif (84 kb)
ESM 1 GC-MS analysis of standard. a Total ion chromatogram of eugenol. b Mass spectrum of eugenol. Base ion and molecular ion, 164 (100 %); and diagnostic ion, 149 ([M?15]+, 37.5 %). (TIF 83.7 kb)


  1. Abdel-Ghaffar F, Semmier M (2007) Efficacy of neem seed extract shampoo on head lice of naturally infected human in Egypt. Parasitol Res 100:329–332CrossRefPubMedGoogle Scholar
  2. Alma MH, Ertas M, Nitz S, Kollmannsberger H (2007) Chemical composition of content of essential oil from the bud of cultivated Turkish clove (Syzygium aromaticum L.). Bio Resources 2:265–269Google Scholar
  3. Bagavan A, Rahuman AA, Kamaraj C, Elango G, Zahir AA, Jayaseelan C, Santhoshkumar T, Marimuthu S (2011) Contact and fumigant toxicity of hexane flower bud extract of Syzygium aromaticum and its compounds against Pediculus humanus capitis (Phthiraptera: Pediculidae). Parasitol Res 109:1329–1340. doi: 10.1007/s00436-011-2425-1 CrossRefPubMedGoogle Scholar
  4. Burgess I (1995) Pediculus humanus capitis in schoolchildren. Lancet 345:730–731CrossRefPubMedGoogle Scholar
  5. Burgess IF (2004) Human lice and their control. Annu Rev Entomol 49:457–481CrossRefPubMedGoogle Scholar
  6. Burkhart CG, Burkhart CG (2001) Recommendation to standardize pediculicidal and ovicide testing for head lice (Anoplura: Pediculidae). J Med Entomol 38:127–129CrossRefPubMedGoogle Scholar
  7. Cutler SJ (2010) Relapsing fever--a forgotten disease revealed. J Appl Microbiol 108:1115–1122. doi: 10.1111/j.1365-2672.2009.04598.x CrossRefPubMedGoogle Scholar
  8. Dhumal TD, Waghmare JS (2015) A pediculicidal activity of clove oil. IJPSR 6:857–865. doi: 10.13040/IJPSR.0975-8232Google Scholar
  9. Dolianitis C, Sinclair R (2002) Optimal treatment of head lice: is a no-nit policy justified? Clin Dermatol 20:94–96CrossRefPubMedGoogle Scholar
  10. Downs AM, Stafford KA, Coles GC (1999) Head lice: prevalence in school children and insecticide resistance. Parasitol Today 15:1–4CrossRefPubMedGoogle Scholar
  11. Gallardo A, Mougabure CG, Picollo MI (2009) Pediculus humanus capitis (head lice) and Pediculus humanus humanus (body lice): response to laboratory temperature and humidity and susceptibility to monoterpenoids. Parasitol Res 105:163–167CrossRefPubMedGoogle Scholar
  12. Gratz NG (1997) Human lice, their prevalence, control and resistance to insecticides; a review, 1985–1997. World Health Organization, Geneva. Switzerland: World Health Organization, Division Control Tropical Diseases, WHO Pesticide Evaluation Scheme, 1997. Report WHO/CTD/ WHOPES/97.8, 7: 176–179.Google Scholar
  13. Gu HJ, Cheng SS, Lin CY, Huang CG, Chen WJ, Chang ST (2009) Repellency of essential oils of Cryptomeria japonica (Pinaceae) against adults of the mosquitoes Aedes aegypti and Aedes albopictus (Diptera:Culicidae). J Agric Food Chem 57:11127–11133. doi: 10.1021/jf9024486 CrossRefPubMedGoogle Scholar
  14. Kegley S, Conlisk E, Moses M (2010) Clove Oil (Eugenol). Marin Municipal Water District, Herbicide Risk Assessment Berkeley, California, Chapter 6Google Scholar
  15. Kirkness EF, Haas BJ, Sun W et al (2010) Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci U S A 107:12168–12173. doi: 10.1073/pnas.1003379107 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kristensen M, Knorr M, Rasmussen AM, Jespersen JB (2006) Survey of permethrin and malathion resistance in human head lice populations from Denmark. J Med Entomol 43:533–538CrossRefPubMedGoogle Scholar
  17. Leo NP, Campbell NJH, Yang X, Mumcuoglu K, Barker SC (2002) Evidence from mitochondrial DNA that head lice and body lice of humans (Phthiraptera: Pediculidae) are conspecific. J Med Entomol 39:662–666CrossRefPubMedGoogle Scholar
  18. Light JE, Toups MA, Reed DL (2008) What’s in a name: the taxonomic status of human head and body lice. Mol Phylogenet Evol 47:1203–1216CrossRefPubMedGoogle Scholar
  19. Marshall CJ, Yoon KS, Lee SH, Pittendrigh BR (2013) Human lice: past, present and future control. Pestic Biochem Physiol 106:162–171. doi: 10.1016/j.pestbp.2013.03.008 CrossRefGoogle Scholar
  20. Mumcuoglu KY, Galun R, Bach U, Miller J, Magdassi S (1996) Repellency of essential oils and their components to the human body louse, Pediculus humanus humanus. Entomol Exp Appl 78:309–314CrossRefGoogle Scholar
  21. Mumcuoglu KY, Magdassi S, Miller J, Ben-Ishai F, Zentner G, Helbin V, Friger M, Kahana F, Ingber A (2004) Repellency of citronella for head lice: double-blind randomized trial of efficacy and safety. Isr Med Assoc J 12:756–759Google Scholar
  22. Nerio LS, Olivero-Verbel J, Stashenko E (2010) Repellent activity of essential oils: a review. Bioresour Technol 101:372–378. doi: 10.1016/j.biortech.2009.07.048 CrossRefPubMedGoogle Scholar
  23. Omolo MO, Okinyo D, Ndiege IO, Lwande W, Hassanali A (2004) Repellency of essential oils of some Kenyan plants against Anopheles gambiae. Phytochemistry 65:2797–2802CrossRefPubMedGoogle Scholar
  24. Pålsson K, Jaenson TG, Baeckström P, Borg-Karlson AK (2008) Tick repellent substances in the essential oil of Tanacetum vulgare. J Med Entomol 45:88–93CrossRefPubMedGoogle Scholar
  25. Pelletier J, Xu P, Yoon KS, Clark JM, Leal WS (2015) Odorant receptor-based discovery of natural repellents of human lice. Insect Biochem Mol Biol 66:103–109. doi: 10.1016/j.ibmb.2015.10.009 CrossRefPubMedGoogle Scholar
  26. Peterson CJ, Coats JR (2011) Catnip Essential Oil and Its Nepetalactone Isomers as Repellents for Mosquitoes. In: Paluch GE, Coats JR (eds) Recent Developments in Invertebrate Repellents. Washington. DC., pp 59–65CrossRefGoogle Scholar
  27. Raoult D, Ndihokubwayo JB, Tissot-Dupont H, Roux V, Faugere B, Abegbinni R, Birtles RJ (1998) Outbreak of epidemic typhus associated with trench fever in Burundi. Lancet 352:353–358. doi: 10.1016/S0140-6736(97)12433-3 CrossRefPubMedGoogle Scholar
  28. Rozendaal JA (1997) Vector control: methods for use by individuals and communities. World Health Organization, GenevaGoogle Scholar
  29. Rutkauskis JR, Jacomini D, Temponi LG, Sarragiotto MH, da Silva EA, Jorge TC (2015) Pediculicidal treatment using ethanol and Melia azedarach L. Parasitol Res 114:2085–2091. doi: 10.1007/s00436-015-4394-2 CrossRefPubMedGoogle Scholar
  30. Tokuno K, Yoshioka Y (2014) Repellent effect of several essential oils against Pediculus humanus humanus. Med Entomol Zool 65:78Google Scholar
  31. Toloza AC, Zygadlo J, Cueto GM, Biurrun F, Zerba E, Picollo MI (2006) Fumigant and repellent properties of essential oils and component compounds against permethrin-resistant Pediculus humanus capitis (Anoplura: Pediculidae) from Argentina. J Med Entomol 43:889–895CrossRefPubMedGoogle Scholar
  32. Tomita T, Yaguchi N, Mihara M, Takahashi M, Agui N, Kasai D (2003) Molecular analysis of a para sodium channel gene from pyrethroid-resistant head lice, Pediculus humanus capitis (Ano- plura: Pediculidae). J Med Entomol 40:468–474CrossRefPubMedGoogle Scholar
  33. Yasutomi K (1956) Studies on the insect-resistance to insecticides : IV Relative toxicity of pp’-DDT and related materials (I). Jpn J Sanit Zool 7:87–93Google Scholar
  34. Yong Z, Fournier P-E, Rydkina E, Raoult D (2003) The geographical segregation of human lice preceded that of Pediculus humanus capitis and Pediculus humanus humanus. CRBiologies 326:565–574Google Scholar
  35. Zamora D, Klotz SA, Meister EA, Schmidt JO (2015) Repellency of the components of the essential oil, citronella, to Triatoma rubida, Triatoma protracta, and Triatoma recurva (Hemiptera: Reduviidae: Triatominae). J Med Entomol 52:719–721. doi: 10.1093/jme/tjv039 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Takuma Iwamatsu
    • 1
    • 2
  • Daisuke Miyamoto
    • 1
  • Hidefumi Mitsuno
    • 3
  • Yoshiaki Yoshioka
    • 4
  • Takeshi Fujii
    • 5
    • 6
  • Takeshi Sakurai
    • 3
  • Yukio Ishikawa
    • 5
  • Ryohei Kanzaki
    • 1
    • 3
    Email author
  1. 1.Department of Advanced Interdisciplinary Studies, Graduate School of EngineeringThe University of TokyoMeguro-kuJapan
  2. 2.Japan Society for the Promotion of Science (JSPS) Research Fellow, Kojimachi Business Center BuildingChiyodaJapan
  3. 3.Research Center for Advanced Science and TechnologyThe University of TokyoMeguro-kuJapan
  4. 4.Osaka Pharmaceutical Co., LtdHigashioosakaJapan
  5. 5.Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoBunkyo-kuJapan
  6. 6.Department of Biological Production, Faculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan

Personalised recommendations