Advertisement

Parasitology Research

, Volume 115, Issue 3, pp 1027–1037 | Cite as

Molecular diversity of avian schistosomes in Danish freshwater snails

  • Anne Ø. ChristiansenEmail author
  • Annette Olsen
  • Kurt Buchmann
  • Per W. Kania
  • Peter Nejsum
  • Birgitte J. Vennervald
Original Paper

Abstract

Avian schistosomes are widespread parasites of snails and waterfowl and may cause cercarial dermatitis (swimmer’s itch) in humans, a disease that is frequently reported in European countries. These parasites are known to occur in Denmark, but here, we applied a new approach using molecular tools to identify the parasites at species level. In order to do that, 499 pulmonate freshwater snails (Radix sp., Lymnaea stagnalis, Stagnicola sp. and Planorbarius corneus) were sampled from 12 lakes, ponds, and marshes in the greater Copenhagen area. Avian schistosome cercariae were identified by microscopy and subjected to molecular investigation by sequencing and phylogenetic analysis of the 5.8S and ITS2 ribosomal DNA for species identification. Additionally, snail hosts belonging to the genus Radix were identified by sequencing and phylogenetic analysis of partial ITS2 ribosomal DNA. Three out of 499 snails shed different species of Trichobilharzia cercariae: Trichobilharzia szidati was isolated from L. stagnalis, Trichobilharzia franki from Radix auricularia and Trichobilharzia regenti from Radix peregra. In the light of the public health risk represented by bird schistosomes, these findings are of concern and, particularly, the presence of the potentially neuro-pathogenic species, T. regenti, in Danish freshwaters calls for attention.

Keywords

Avian schistosomes Trichobilharzia Cercarial dermatitis Denmark ITS rDNA Parasite-host relationship 

Notes

Acknowledgments

The authors would like to thank Thomas K. Kristensen for valuable assistance with the field work.

Supplementary material

436_2015_4830_MOESM1_ESM.pdf (517 kb)
Online Resource 1 (PDF 517 kb)
436_2015_4830_MOESM2_ESM.pdf (339 kb)
Online Resource 2 (PDF 338 kb)
436_2015_4830_MOESM3_ESM.pdf (22 kb)
Online Resource 3 (PDF 21 kb)

References

  1. Aldhoun JA, Faltýnková A, Karvonen A, Horák P (2009a) Schistosomes in the north: a unique finding from a prosobranch snail using molecular tools. Parasitol Int 58:314–317. doi: 10.1016/j.parint.2009.03.007 CrossRefPubMedGoogle Scholar
  2. Aldhoun JA, Kolárová L, Horák P, Skírnisson K (2009b) Bird schistosome diversity in Iceland: molecular evidence. J Helminthol 83:173–180. doi: 10.1017/S0022149X09289371 CrossRefPubMedGoogle Scholar
  3. Aldhoun JA, Podhorský M, Holická M, Horák P (2012) Bird schistosomes in planorbid snails in the Czech Republic. Parasitol Int 61:250–259. doi: 10.1016/j.parint.2011.10.006 CrossRefPubMedGoogle Scholar
  4. Bargues MD, Vigo M, Horak P, Dvorak J, Patzner RA, Pointier JP, Jackiewicz M, Meier-Brook C, Mas-Coma S (2001) European Lymnaeidae (Mollusca: Gastropoda), intermediate hosts of trematodiases, based on nuclear ribosomal DNA ITS-2 sequences. Infect Genet Evol I 1:85–107. doi: 10.1016/S1567-1348(01)00019-3 CrossRefGoogle Scholar
  5. Bayssade-Dufour C, Vuong PN, René M, Martin-Loehr C, Martins C (2002) Visceral lesions in mammals and birds exposed to agents of human cercarial dermatitis. Bull Soc Pathol Exot 95:229–237PubMedGoogle Scholar
  6. Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, De Wit P, Sánchez-García M, Ebersberger I, de Sousa F, Amend AS, Jumpponen A, Unterseher M, Kristiansson E, Abarenkov K, Bertrand YJK, Sanli K, Eriksson KM, Vik U, Veldre V, Nilsson RH (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:914–919. doi: 10.1111/2041-210X.12073 Google Scholar
  7. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580PubMedCentralCrossRefPubMedGoogle Scholar
  8. Berg K, Reiter HFH (1960) Observations on schistosome dermatitis in Denmark. Acta Derm Venereol 40:369–380Google Scholar
  9. Blair D (2006) Ribosomal DNA variation in parasitic flatworms. In: Maule AG, Marks NJ (eds) Parasitic flatworms: molecular biology, biochemistry, immunology and physiology. CABI, pp 96–123Google Scholar
  10. Brant SV (2007) The occurrence of the avian schistosome Allobilharzia visceralis Kolárová, Rudolfová, Hampl et Skírnisson, 2006 (Schistosomatidae) in the tundra swan, Cygnus columbianus (Anatidae), from North America. Folia Parasitol (Praha) 54:99–104CrossRefGoogle Scholar
  11. Brant SV, Loker ES (2009) Molecular systematics of the avian schistosome genus Trichobilharzia (Trematoda: Schistosomatidae) in North America. J Parasitol 95:941–963. doi: 10.1645/GE-1870.1 PubMedCentralCrossRefPubMedGoogle Scholar
  12. Brant SV, Loker ES (2013) Discovery-based studies of schistosome diversity stimulate new hypotheses about parasite biology. Trends Parasitol 29:449–459. doi: 10.1016/j.pt.2013.06.004 PubMedCentralCrossRefPubMedGoogle Scholar
  13. Brown R, Soldánová M, Barrett J, Kostadinova A (2011) Small-scale to large-scale and back: larval trematodes in Lymnaea stagnalis and Planorbarius corneus in Central Europe. Parasitol Res 108:137–150. doi: 10.1007/s00436-010-2047-z CrossRefPubMedGoogle Scholar
  14. Buchmann K, Anne H, Bresciani J (2004) Snyltere angriber badegæster. Aktuel Naturvidenskab 1:8–10Google Scholar
  15. Chrisanfova GG, Lopatkin AA, Mishchenkov VA, Kheidorova EE, Dorozhenkova TE, Zhukova TV, Ryskov AP, Semyenova SK (2009) Genetic variability of bird schistosomes (class Trematoda, family Schistosomatidae) of Naroch Lake: identification of a new species in the Trichobilharzia ocellata group. Dokl Biochem Biophys 428:268–272. doi: 10.1134/S1607672909050123 CrossRefPubMedGoogle Scholar
  16. Cipriani P, Mattiucci S, Paoletti M, Scialanca F, Nascetti G (2011) Molecular evidence of Trichobilharzia franki Müller and Kimmig, 1994 (Digenea: Schistosomatidae) in Radix auricularia from Central Italy. Parasitol Res 109:935–940. doi: 10.1007/s00436-011-2295-6 CrossRefPubMedGoogle Scholar
  17. Cordellier M, Pfenninger A, Streit B, Pfenninger M (2012) Assessing the effects of climate change on the distribution of pulmonate freshwater snail biodiversity. Mar Biol 159:2519–2531. doi: 10.1007/s00227-012-1894-9 CrossRefGoogle Scholar
  18. Cort W (1928) Schistosome dermatitis in the United States (Michigan). J Am Med Assoc 90:1027–1029CrossRefGoogle Scholar
  19. Danish Ministry of Health (2000) Bekendtgørelse om lægers anmeldelse af smitsomme sygdomme m.v. Act no. 277 of 14 April 2000. https://www.retsinformation.dk/Forms/R0710.aspx?id=21406&exp=1. Accessed 7 May 2015
  20. Dvorák J, Vanácová S, Hampl V, Flegr J, Horák P (2002) Comparison of european Trichobilharzia species based on ITS1 and ITS2 sequences. Parasitology 124:307–313CrossRefPubMedGoogle Scholar
  21. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi: 10.1093/nar/gkh340 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Faltýnková A, Našincová V, Kablasková L (2007) Larval trematodes (Digenea) of the great pond snail, Lymnaea stagnalis (L.), (Gastropoda, Pulmonata) in Central Europe: a survey of species and key to their identification. Parasite 14:39–51CrossRefPubMedGoogle Scholar
  23. Faltýnková A, Nasincová V, Kablásková L (2008) Larval trematodes (Digenea) of planorbid snails (Gastropoda: Pulmonata) in Central Europe: a survey of species and key to their identification. Syst Parasitol 69:155–178. doi: 10.1007/s11230-007-9127-1 CrossRefPubMedGoogle Scholar
  24. Ferté H, Depaquit J, Carré S, Villena I, Léger N (2005) Presence of Trichobilharzia szidati in Lymnaea stagnalis and T. franki in Radix auricularia in northeastern France: molecular evidence. Parasitol Res 95:150–154. doi: 10.1007/s00436-004-1273-7 CrossRefPubMedGoogle Scholar
  25. Frandsen F, Christensen N (1984) An introductory guide to the identification of cercariae from African freshwater snails with special reference to cercariae of trematode species of medical and veterinary importance. Acta Trop 41:181–202PubMedGoogle Scholar
  26. Galazzo DE, Dayanandan S, Marcogliese DJ, McLaughlin JD (2002) Molecular systematics of some North American species of Diplostomum (Digenea) based on rDNA-sequence data and comparisons with European congeners. Can J Zool 80:2207–2217. doi: 10.1139/Z02-198 CrossRefGoogle Scholar
  27. Glöer P (2002) Tierwelt Deutschlands. Mollusca I - Die Süβwassergastropoden Nord- und Mitteleuropas. Conch-Books, Bad KreuznachGoogle Scholar
  28. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  29. Horák P, Kolárová L (2000) Survival of bird schistosomes in mammalian lungs. Int J Parasitol 30:65–68CrossRefPubMedGoogle Scholar
  30. Horák P, Kolářová L (2001) Bird schistosomes: do they die in mammalian skin? Trends Parasitol 17:66–69CrossRefPubMedGoogle Scholar
  31. Horák P, Kolářová L (2011) Snails, waterfowl and cercarial dermatitis. Freshw Biol 56:779–790. doi: 10.1111/j.1365-2427.2010.02545.x CrossRefGoogle Scholar
  32. Horák P, Kolářová L, Dvorák J (1998) Trichobilharzia regenti n. sp. (Schistosomatidae, Bilharziellinae), a new nasal schistosome from Europe. Parasite 5:349–357CrossRefPubMedGoogle Scholar
  33. Horák P, Dvorák J, Kolárová L, Trefil L (1999) Trichobilharzia regenti, a pathogen of the avian and mammalian central nervous systems. Parasitology 119:577–581CrossRefPubMedGoogle Scholar
  34. Horák P, Kolářová L, Adema CM (2002) Biology of the schistosome genus Trichobilharzia. Adv Parasitol 52:155–233CrossRefPubMedGoogle Scholar
  35. Horák P, Mikeš L, Lichtenbergová L, Skála V, Soldánová M, Brant SV (2015) Avian schistosomes and outbreaks of cercarial dermatitis. Clin Microbiol Rev 28:165–190. doi: 10.1128/CMR.00043-14 PubMedCentralCrossRefPubMedGoogle Scholar
  36. Hoyer M, Canfield D (1994) Bird abundance and species richness on Florida lakes: influence of trophic status, lake morphology, and aquatic macrophytes. Aquat Birds Trophic Web Lakes 297(280):107–119CrossRefGoogle Scholar
  37. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. doi: 10.1093/bioinformatics/17.8.754 CrossRefPubMedGoogle Scholar
  38. Huňová K, Kašný M, Hampl V, Leontovyč R, Kuběna A, Mikeš L, Horák P (2012) Radix spp.: identification of trematode intermediate hosts in the Czech Republic. Acta Parasitol 57:273–284. doi: 10.2478/s11686-012-0040-7 PubMedGoogle Scholar
  39. Jensen PN, Boutrup S, Svendsen LM, Blicher-Mathiesen G, Wiberg-Larsen P, Bjerring R, Hansen JW, Ellerman T, Thorling L, Holm AG (2013) Vandmiljø og natur 2012. NOVANA. Tilstand og udvikling - faglig sammenfatning. Aarhus Universitet, DCE - Nationalt Center for Miljø og EnergiGoogle Scholar
  40. Jeppesen E, Kronvang B, Jørgensen TB, Larsen SE, Andersen HE, Søndergaard M, Liboriussen L, Bjerring R, Johansson LS, Trolle D, Lauridsen TL (2012) Recent climate induced changes in freshwaters in Denmark. In: Goldman CR, Kumagai M, Robarts RD (eds) Climate change and global warming of inland waters: impacts and mitigation for ecosystems and societies, 1st edn. Wiley, Chichester, pp 155–171CrossRefGoogle Scholar
  41. Johnson PTJ, Chase JM, Dosch KL, Hartson RB, Gross JA, Larson DJ, Sutherland DR, Carpenter SR (2007) Aquatic eutrophication promotes pathogenic infection in amphibians. Proc Natl Acad Sci U S A 104:15781–15786. doi: 10.1073/pnas.0707763104 PubMedCentralCrossRefPubMedGoogle Scholar
  42. Jouet D, Ferté H, Depaquit J, Rudolfová J, Latour P, Zanella D, Kaltenbach ML, Léger N (2008) Trichobilharzia spp. in natural conditions in Annecy Lake, France. Parasitol Res 103:51–58. doi: 10.1007/s00436-008-0926-3 CrossRefPubMedGoogle Scholar
  43. Jouet D, Ferté H, Hologne C, Kaltenbach ML, Depaquit J (2009) Avian schistosomes in French aquatic birds: a molecular approach. J Helminthol 83:181–189. doi: 10.1017/S0022149X09311712 CrossRefPubMedGoogle Scholar
  44. Jouet D, Skírnisson K, Kolářová L, Ferté H (2010a) Molecular diversity of Trichobilharzia franki in two intermediate hosts (Radix auricularia and Radix peregra): a complex of species. Infect Genet Evol 10:1218–1227. doi: 10.1016/j.meegid.2010.08.001 CrossRefPubMedGoogle Scholar
  45. Jouet D, Skírnisson K, Kolářová L, Ferté H (2010b) Final hosts and variability of Trichobilharzia regenti under natural conditions. Parasitol Res 107:923–930. doi: 10.1007/s00436-010-1953-4 CrossRefPubMedGoogle Scholar
  46. Jouet D, Kolářová L, Patrelle C, Ferté H, Skírnisson K (2015) Trichobilharzia anseri n. sp. (Schistosomatidae: Digenea), a new visceral species of avian schistosomes isolated from greylag goose (Anser anser L.) in Iceland and France. Infect Genet Evol. doi: 10.1016/j.meegid.2015.06.012 PubMedGoogle Scholar
  47. Kock S (2001) Investigations of intermediate host specificity help to elucidate the taxonomic status of Trichobilharzia ocellata (Digenea: Schistosomatidae). Parasitology 123:67–70CrossRefPubMedGoogle Scholar
  48. Kolářová L, Horák P, Fajfrlík K (1992) Cercariae of Trichobilharzia szidati Neuhaus, 1952 (Trematoda: Schistosomatidae): the causative agent of cercarial dermatitis in Bohemia and Moravia. Folia Parasitol (Praha) 39:399–400Google Scholar
  49. Kolářová L, Rudolfová J, Hampl V, Skírnisson K (2006) Allobilharzia visceralis gen. nov., sp. nov. (Schistosomatidae-Trematoda) from Cygnus cygnus (L.) (Anatidae). Parasitol Int 55:179–186. doi: 10.1016/j.parint.2005.10.009 CrossRefPubMedGoogle Scholar
  50. Kolářová L, Horák P, Skírnisson K (2010) Methodical approaches in the identification of areas with a potential risk of infection by bird schistosomes causing cercarial dermatitis. J Helminthol 84:327–335. doi: 10.1017/S0022149X09990721 CrossRefPubMedGoogle Scholar
  51. Kolářová L, Horák P, Skírnisson K, Marečková H, Doenhoff M (2013a) Cercarial dermatitis, a neglected allergic disease. Clin Rev Allergy Immunol 45:63–74. doi: 10.1007/s12016-012-8334-y CrossRefPubMedGoogle Scholar
  52. Kolářová L, Skírnisson K, Ferté H, Jouet D (2013b) Trichobilharzia mergi sp. nov. (Trematoda: Digenea: Schistosomatidae), a visceral schistosome of Mergus serrator (L.) (Aves: Anatidae). Parasitol Int 62:300–308. doi: 10.1016/j.parint.2013.03.002 CrossRefPubMedGoogle Scholar
  53. Korbie DJ, Mattick JS (2008) Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc 3:1452–1456. doi: 10.1038/nprot.2008.133 CrossRefPubMedGoogle Scholar
  54. Kouřilová P, Syrůcek M, Kolářová L (2004) The severity of mouse pathologies caused by the bird schistosome Trichobilharzia regenti in relation to host immune status. Parasitol Res 93:8–16. doi: 10.1007/s00436-004-1079-7 CrossRefPubMedGoogle Scholar
  55. Larsen AH, Bresciani J, Buchmann K (2004) Increasing frequency of cercarial dermatitis at higher latitudes. Acta Parasitol 49:217–221Google Scholar
  56. Lawton SP, Lim RM, Dukes JP, Cook RT, Walker AJ, Kirk RS (2014) Identification of a major causative agent of human cercarial dermatitis, Trichobilharzia franki (Müller and Kimmig 1994), in southern England and its evolutionary relationships with other European populations. Parasit Vectors 7:277. doi: 10.1186/1756-3305-7-277 PubMedCentralCrossRefPubMedGoogle Scholar
  57. Lehikoinen A, Jaatinen K (2012) Delayed autumn migration in northern European waterfowl. J Ornithol 153:563–570. doi: 10.1007/s10336-011-0777-z CrossRefGoogle Scholar
  58. Lehikoinen A, Jaatinen K, Vähätalo AV, Clausen P, Crowe O, Deceuninck B, Hearn R, Holt CA, Hornman M, Keller V, Nilsson L, Langendoen T, Tománková I, Wahl J, Fox AD (2013) Rapid climate driven shifts in wintering distributions of three common waterbird species. Glob Chang Biol 19:2071–2081. doi: 10.1111/gcb.12200 CrossRefPubMedGoogle Scholar
  59. Lichtenbergová L, Horák P (2012) Pathogenicity of Trichobilharzia spp. for vertebrates. J Parasitol Res 761968. doi:  10.1155/2012/761968
  60. Littlewood DT, Curini-Galletti M, Herniou EA (2000) The interrelationships of proseriata (Platyhelminthes: seriata) tested with molecules and morphology. Mol Phylogenet Evol 16:449–466. doi: 10.1006/mpev.2000.0802 CrossRefPubMedGoogle Scholar
  61. Loy C, Haas W (2001) Prevalence of cercariae from Lymnaea stagnalis snails in a pond system in Southern Germany. Parasitol Res 87:878–882. doi: 10.1007/s004360100462 CrossRefPubMedGoogle Scholar
  62. Morley NJ, Lewis JW (2013) Thermodynamics of cercarial development and emergence in trematodes. Parasitology 140:1211–1224. doi: 10.1017/S0031182012001783 CrossRefPubMedGoogle Scholar
  63. Müller V, Kimmig P (1994) Trichobilharzia franki n. sp. - die Ursache für Badedermatitiden in südwestdeutchen Baggerseen. Appl Parasitol 35:12–31PubMedGoogle Scholar
  64. Neuhaus W (1952) Biologie und entwicklung von Trichobilharzia szidati n. sp. (Trematoda, Schistosomatidae), einem erreger von dermatitis beim menschen. Zeitschrift für Parasitenkd 15:203–266Google Scholar
  65. Nilsson L (2008) Changes of numbers and distribution of wintering waterfowl in Sweden during forty years, 1967–2006. Ornis Svecica 18:135–226Google Scholar
  66. Nolan MJ, Cribb TH (2005) The use and implications of ribosomal DNA sequencing for the discrimination of digenean species. Adv Parasitol 60:101–163. doi: 10.1016/S0065-308X(05)60002-4 CrossRefPubMedGoogle Scholar
  67. Pfenninger M, Cordellier M, Streit B (2006) Comparing the efficacy of morphologic and DNA-based taxonomy in the freshwater gastropod genus Radix (Basommatophora, Pulmonata). BMC Evol Biol 6:100. doi: 10.1186/1471-2148-6-100 PubMedCentralCrossRefPubMedGoogle Scholar
  68. Picard D, Jousson O (2001) Genetic variability among cercariae of the Schistosomatidae (Trematoda: Digenea) causing swimmer’s itch in Europe. Parasite 8:237–242CrossRefPubMedGoogle Scholar
  69. Podhorský M, Huůzová Z, Mikeš L, Horák P (2009) Cercarial dimensions and surface structures as a tool for species determination of Trichobilharzia spp. Acta Parasitol 54:28–36. doi: 10.2478/s11686-009-0011-9 CrossRefGoogle Scholar
  70. Poulin R (2006) Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132:143–151. doi: 10.1017/S0031182005008693 CrossRefPubMedGoogle Scholar
  71. Puslednik L, Ponder WF, Dowton M, Davis AR (2009) Examining the phylogeny of the Australasian Lymnaeidae (Heterobranchia: Pulmonata: Gastropoda) using mitochondrial, nuclear and morphological markers. Mol Phylogenet Evol 52:643–659. doi: 10.1016/j.ympev.2009.03.033 CrossRefPubMedGoogle Scholar
  72. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi: 10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  73. Rudolfová J, Hampl V, Bayssade-Dufour C, Lockyer AE, Littlewood DTJ, Horák P (2005) Validity reassessment of Trichobilharzia species using Lymnaea stagnalis as the intermediate host. Parasitol Res 95:79–89. doi: 10.1007/s00436-004-1262-x CrossRefPubMedGoogle Scholar
  74. Rudolfová J, Littlewood DTJ, Sitko J, Horák P (2007) Bird schistosomes of wildfowl in the Czech Republic and Poland. Folia Parasitol (Praha) 54:88–93CrossRefGoogle Scholar
  75. Simon-Martin F, Simon-Vicente F (1999) The life cycle of Trichobilharzia salmanticensis n. sp. (Digenea: Schistosomatidae), related to cases of human dermatitis. Res Rev Parasitol 59:13–18Google Scholar
  76. Skírnisson K, Aldhoun JA, Kolárová L (2009) A review on swimmer’s itch and the occurrence of bird schistosomes in Iceland. J Helminthol 83:165–171. doi: 10.1017/S0022149X09336408 CrossRefPubMedGoogle Scholar
  77. Soldánová M, Selbach C, Kalbe M, Kostadinova A, Sures B (2013) Swimmer’s itch: etiology, impact, and risk factors in Europe. Trends Parasitol 29:65–74. doi: 10.1016/j.pt.2012.12.002 CrossRefPubMedGoogle Scholar
  78. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 PubMedCentralCrossRefPubMedGoogle Scholar
  79. Wesenberg-Lund C (1934) Contributions to the development of the trematoda digenea. Part II. The biology of the freshwater cercariae in Danish freshwaters. Levin & Munksgaard, KøbenhavnGoogle Scholar
  80. Zbikowska E, Nowak A (2009) One hundred years of research on the natural infection of freshwater snails by trematode larvae in Europe. Parasitol Res 105:301–311. doi: 10.1007/s00436-009-1462-5 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Anne Ø. Christiansen
    • 1
    Email author
  • Annette Olsen
    • 1
  • Kurt Buchmann
    • 2
  • Per W. Kania
    • 2
  • Peter Nejsum
    • 1
  • Birgitte J. Vennervald
    • 1
  1. 1.Section for Parasitology and Aquatic Diseases, Department of Veterinary Disease Biology, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
  2. 2.Section for Parasitology and Aquatic Diseases, Department of Veterinary Disease Biology, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations