Skip to main content

Advertisement

Log in

Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Malaria remains a major public health problem due to the emergence and spread of Plasmodium falciparum strains resistant to chloroquine. There is an urgent need to investigate new and effective sources of antimalarial drugs. This research proposed a novel method of fern-mediated synthesis of silver nanoparticles (AgNP) using a cheap plant extract of Pteridium aquilinum, acting as a reducing and capping agent. AgNP were characterized by UV–vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Phytochemical analysis of P. aquilinum leaf extract revealed the presence of phenols, alkaloids, tannins, flavonoids, proteins, carbohydrates, saponins, glycosides, steroids, and triterpenoids. LC/MS analysis identified at least 19 compounds, namely pterosin, hydroquinone, hydroxy-acetophenone, hydroxy-cinnamic acid, 5, 7-dihydroxy-4-methyl coumarin, trans-cinnamic acid, apiole, quercetin 3-glucoside, hydroxy-L-proline, hypaphorine, khellol glucoside, umbelliferose, violaxanthin, ergotamine tartrate, palmatine chloride, deacylgymnemic acid, methyl laurate, and palmitoyl acetate. In DPPH scavenging assays, the IC50 value of the P. aquilinum leaf extract was 10.04 μg/ml, while IC50 of BHT and rutin were 7.93 and 6.35 μg/ml. In mosquitocidal assays, LC50 of P. aquilinum leaf extract against Anopheles stephensi larvae and pupae were 220.44 ppm (larva I), 254.12 ppm (II), 302.32 ppm (III), 395.12 ppm (IV), and 502.20 ppm (pupa). LC50 of P. aquilinum-synthesized AgNP were 7.48 ppm (I), 10.68 ppm (II), 13.77 ppm (III), 18.45 ppm (IV), and 31.51 ppm (pupa). In the field, the application of P. aquilinum extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. Both the P. aquilinum extract and AgNP reduced longevity and fecundity of An. stephensi adults. Smoke toxicity experiments conducted against An. stephensi adults showed that P. aquilinum leaf-, stem-, and root-based coils evoked mortality rates comparable to the permethrin-based positive control (57, 50, 41, and 49 %, respectively). Furthermore, the antiplasmodial activity of P. aquilinum leaf extract and green-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of P. falciparum. IC50 of P. aquilinum were 62.04 μg/ml (CQ-s) and 71.16 μg/ml (CQ-r); P. aquilinum-synthesized AgNP achieved IC50 of 78.12 μg/ml (CQ-s) and 88.34 μg/ml (CQ-r). Overall, our results highlighted that fern-synthesized AgNP could be candidated as a new tool against chloroquine-resistant P. falciparum and different developmental instars of its primary vector An. stephensi. Further research on nanosynthesis routed by the LC/MS-identified constituents is ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abirami D, Murugan K (2011) HPTLC quantification of flavonoids, larvicidal and smoke repellent activities of Cassia occidentalis L. (Caesalpiniaceae) against malarial vectore Anopheles stephensi Lis (Diptera: Culicidae). J Phytol 3:60–72

    Google Scholar 

  • Adams Y, Smith SL, Schwartz-Albiez R, Andrews KT (2005) Carrageenans inhibit the in vitro growth of Plasmodium falciparum and cytoadhesion to CD36. Parasitol Res 97:290–294

    Article  PubMed  Google Scholar 

  • Ali DM, Sasikala M, Gunasekaran M, Thajuddin N (2011) Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei. Dig J Nanomater Biostruct 6:385–390

    Google Scholar 

  • Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006c) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006d) The sensilla of Aedes and Anopheles mosquitoes and their importance in repellency. Parasitol Res 99:491–499

    Article  PubMed  Google Scholar 

  • Ankanna S, Prasad TNVKV, Elumalai EK, Savithramma N (2010) Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark. Dig J Nanomat Biostruct 5(2):369–372

    Google Scholar 

  • Arnason JT, Philogene BJR, Morand P (1989) Insecticides of plant origin. ACS Symp Ser No. 387. American Chemical Society, Washington, p 213

    Book  Google Scholar 

  • Arora R, Kaur M, Gill NS (2011) Antioxidant activity and pharmocological evaluation of Cucumis melo var. agrestis. Res J Phytochem 5(3):146–155

    Article  CAS  Google Scholar 

  • Bagavan A, Rahuman AA, Kaushik NK, Sahal D (2011) In vitro antimalarial activity of medicinal plant extracts against Plasmodium falciparum. Parasitol Res 108:15–22

    Article  PubMed  Google Scholar 

  • Basavaraja S, Balaji DS, Arunkumar L, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus, Fusarium semitectum. Mater Res Bull 43:1164–1170

    Article  CAS  Google Scholar 

  • Becker K, Tilley L, Vennerstrom JL, Roberts D, Rorerson S, Ginsburg H (2004) Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol 34:163–189

    Article  CAS  PubMed  Google Scholar 

  • Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805

  • Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114:3201–3212

    Article  PubMed  Google Scholar 

  • Benelli G (2016) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res. doi:10.1007/s00436-015-4800-9

    Google Scholar 

  • Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114:391–397

    Article  PubMed  Google Scholar 

  • Bhattacharya D, Gupta RK (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25(4):199–204

    Article  CAS  PubMed  Google Scholar 

  • Blois MS (1958) Antioxidants determination by the use of a stable free radical. Nature 4617:1199–1200

    Article  Google Scholar 

  • Chen NF, Chen CW, Zhang L (2013) Separation and structure elucidation of a new homoflavanol derivative from Pteridium aquilinum (L.) Kuhn. Nat Prod Res 27(19):1764–1769

  • Cooper-Driver G (1976) Chemotaxonomy and phytochemical ecology of bracken. Bot J Linn Sot 73:35–46

    Article  CAS  Google Scholar 

  • David JP, Rey D, Pautou MP, Meyran JC (2000) Differential toxicity of leaf litter to dipteran larvae of mosquito developmental sites. J Invertebr Pathol 75:9–18

    Article  CAS  PubMed  Google Scholar 

  • Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–29

    Article  PubMed  Google Scholar 

  • Dubar F, Egan TJ, Pradines B, Kuter D, Ncokazi KK, Forge D et al (2011) The antimalarial ferroquine: role of the metal and intramolecular hydrogen bond in activity and resistance. ACS Chem Biol 6(3):275–87

    Article  CAS  PubMed  Google Scholar 

  • Ehimwenma SO, Osagie AU (2007) Phytochemical screening and anti-anaemic effects of Jatropha tanjorensis leaf in protein malnourished rats. Plant Arch 7:509–516

    Google Scholar 

  • El Tahir A, Satti GM, Khalid SA (1999) Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Maytenus senegalensis (Lam.) Exell. J Ethnopharmacol 64(3):227–233

    Article  PubMed  Google Scholar 

  • Fayaz AM, Balaji K, Girilal MYR, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109

    Article  CAS  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  PubMed  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University, London, pp 68–78

    Google Scholar 

  • Franklin TJ, Snow GA, Barrettzee KJ, Nolan RD (1989) Biochemistry of antimicrobial action, 4th edn. Chapman and Hall, London, pp 73–135

    Google Scholar 

  • Girennavar B, Jayaprakasha GK, Jadegoud Y, Gowda GAN, Patil BS (2007) Radical scavenging and cytochrome P450 3A4 inhibitory activity of bergaptol and geranylcoumarin from grapefruit. Bioorg Med Chem 15:3684–3691

    Article  CAS  PubMed  Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnol 18:285604

    Article  CAS  Google Scholar 

  • Griffiths MJ, Ndungu F, Baird KL, Muller DPR, Marsh K, Charles RJ, Newton C (2001) Oxidative stress and erythrocyte damage in Kenyan children with severe Plasmodium falciparum malaria. Br J Haematol 113:486–491

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB, Harborne AJ (1998) Phytochemical methods: a guide to modern techniques of plant analysis. Kluwer Academic Publishers, London

    Google Scholar 

  • Haverkamp RG (2010) Ten years of nanoparticle research in Australia and New Zealand. Part Sci Technol 28:1–40

    Article  CAS  Google Scholar 

  • Josephrajkumar A, Subrahmanyam B, Devakumar C (2000) Growth-regulatory activity of silver fern extract on the cotton bollworm, Helicoverpa armigera (Hübner). Int J Tropic Insect Sci 20(04):295–302

    Article  Google Scholar 

  • Kamaraj C, Kaushik NK, Rahuman AA, Mohanakrishnan D, Bagavan A, Elango G, Zahir AA, Santhoshkumar T, Marimuthu S, Jayaseelan C, Kirthi AV, Rajakumar G, Velayutham K, Sahal D (2012) Antimalarial activities of medicinal plants traditionally used in the villages of Dharmapuri regions of South India. J Ethnopharmacol 141:796–802

    Article  PubMed  Google Scholar 

  • Kardong D, Upadhyaya S, Saikia LR (2013) Screening of phytochemicals, antioxidant and antibacterial activity of crude extract of Pteridium aquilinum Kuhn. J Pharm Res 6:179–182

    CAS  Google Scholar 

  • Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta Part A: Mol Biomol Spectrosc 79:594–598

    Article  CAS  Google Scholar 

  • Kemp MM, Kumar A, Mousa S, Dyskin E, Yalcin M, Ajayan P, Linhardt RJ, Mousa SA (2009) Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnol 20:455104

    Article  CAS  Google Scholar 

  • Kirby GC, O’Neil MJ, Philipson JD, Warhurst DC (1989) In vivo studies on the mode of action of quassinoids with activity against chloroquine resistant Plasmodium falciparum. Biochem Pharmacol 38:4367–4374

    Article  CAS  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Vincent S, Barnard DR (2012) Studies on larvicidal and pupicidal activity of Leucas aspera Willd (Lamiaceae) and bacterial insecticide, Bacillus sphaericus against malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 110:195–203

    Article  PubMed  Google Scholar 

  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Coll Surf B Biointe 76:50–56

    Article  CAS  Google Scholar 

  • Kumar A, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector-Born Zoon Dis 12:262–268

    Article  Google Scholar 

  • Kumar AN, Murugan K, Madhiyazhagan P (2013) Integration of botanicals and microbials for management of crop and human pests. Parasitol Res 112:313–325

    Article  Google Scholar 

  • Madhiyazhagan P, Murugan K, Naresh Kumar A, Nataraj T, Dinesh D, Panneerselvam C, Subramaniam J, Mahesh Kumar P, Suresh U, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Benelli G (2015) Sargassum muticum-synthetized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol Res. doi:10.1007/s00436-015-4671-0

    Google Scholar 

  • Magudapathy P, Gangopadhyay P, Panigrahi BK, Nair KGM, Dhara S (2001) Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica 299:142–146

    Article  CAS  Google Scholar 

  • Makowski R (1993) Effect of inoculum concentration, temperature, dew period, and plants growth stage on disease of round-leaved mallow and velvetleaf by Colletotrichum gloeosporioides f. sp. malvae. Ecol Epidemiol 83:1229–1234

    Google Scholar 

  • Mehlhorn H (2008) Encyclopedia of parasitology, 3rd edn. Springer, Heidelberg

    Book  Google Scholar 

  • Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265

    Article  PubMed  Google Scholar 

  • Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279:49064–49073

    Article  CAS  PubMed  Google Scholar 

  • Murugan K, Vahitha R, Baruah I, Das SC (2003) Integration of botanicals and microbial pesticides for the control of filarial vector, Culex quinquefasciatus. Ann Med Entomol 12:11–23

    Google Scholar 

  • Murugan K, Murugan P, Noortheen A (2007) Larvicidal and repellent potential of Albizzia amara Boivin and Ocimum basilicum Linn against dengue vector, Aedes aegypti Insecta: Diptera: Culicidae). Biores Technol 98:198–20

    Article  CAS  Google Scholar 

  • Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Mahesh Kumar P, Subramaniam J, Suresh U (2015a) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114:2243–53

    Article  PubMed  Google Scholar 

  • Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138

    Article  CAS  PubMed  Google Scholar 

  • Murugan K, Aarthi N, Kovendan K, Panneerselvam C, Chandramohan B, Mahesh Kumar P, Amerasan D, Paulpandi M, Chandirasekar R, Dinesh D, Suresh U, Subramaniam J, Higuchi A, Alarfaj AA, Nicoletti M, Mehlhorn H, Benelli G (2015c) Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and Plasmodium falciparum. Parasitol Res. doi:10.1007/s00436-015-4593-x

    Google Scholar 

  • Murugan K, Samidoss CM, Panneerselvam C, Higuchi A, Roni M, Suresh U, Chandramohan B, Subramaniam J, Madhiyazhagan P, Dinesh D, Rajaganesh R, Alarfaj AA, Nicoletti M, Kumar S, Wei H, Canale A, Mehlhorn H, Benelli G (2015d) Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi? Parasitol Res 114:4087–4097

    Article  PubMed  Google Scholar 

  • Murugan K, Dinesh D, Jenil Kumar P, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Suresh U, Nicoletti M, Alarfaj AA, Munusamy MA, Higuchi A, Mehlhorn H, Benelli G (2015e) Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitol Res. doi:10.1007/s00436-015-4710-x

    Google Scholar 

  • Murugan K, Aamina LM, Panneerselvam C, Dinesh D, Suresh U, Subramaniam J, Madhiyazhagan P, Hwang JS, Wang L, Nicoletti M, Benelli G (2015f) Aristolochia indica green-synthesized silver nanoparticles: a sustainable control tool against the malaria vector Anopheles stephensi? Res Vet Sci. doi:10.1016/j.rvsc.2015.08.001

    PubMed  Google Scholar 

  • Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1:169–172

    Article  CAS  PubMed  Google Scholar 

  • Nethengwe MF, Opoku AR, Dludla PV, Madida KT, Shonhai A, Smith P, Singh M (2012) Larvicidal, antipyretic and antiplasmodial activity of some Zulu medicinal plants. J Med Plants Res 6(7):1255–1262

    Article  Google Scholar 

  • Nwiloh BI, Monago CC, Uwakwe AA (2014) Chemical composition of essential oil from the fiddleheads of Pteridium aquilinum L. Kuhn found in Ogoni. J Med Plant Res 8(1):77–80

    Article  CAS  Google Scholar 

  • Odoemena CSI, Sampson AE, Danladi B, Ajibesin KK (2002) Phytochemical study and nutritive potential of Afrofritomia sylevestris leaf. Nig J Nat Prod Med 6:42–44

    CAS  Google Scholar 

  • Olayiwola G, Iwalewa EO, Omobuwajo OR, Adebajo AC, Adeniyi AA, Verspohl EJ (2004) The antidiabetic potential of Jatropha tanjorensis leaves. Niger J Nat Prod Med 8:55–58

    Google Scholar 

  • Omoregie ES, Osagie AU (2007) Phytochemical screening and anti-anemic effect of Jatropha tanjorensis leaf in protein malnourished rats. Plant Arch 7:509–516

    Google Scholar 

  • Othman A, Ismail A, Ghani NA, Adenan I (2007) Antioxidant capacity and phenolic content of cocoa beans. Food Chem 100:1523–1530

    Article  CAS  Google Scholar 

  • Pal RS, Ariharasivakumar, Girhepunje GK, Upadhyay A (2009) In-vitro antioxidative activity of phenolic and flavonoid compounds extracted from seeds of Abrus precatorius. Int J Pharm Pharma Sci 1(2):136–140

    CAS  Google Scholar 

  • Panneerselvam C, Murugan K (2013) Adulticidal, repellent, and ovicidal properties of indigenous plant extracts against the malarial vector, Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:679–692

    Article  PubMed  Google Scholar 

  • Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar P, Subramaniam J (2013a) Mosquito larvicidal and pupicidal activity of Euphorbia hirta Linn. (Family: Euphorbiaceae) and Bacillus sphaericus against Anopheles stephensi Liston (Diptera: Culicidae). Asian Pac J Trop Med 6:102–109

    Article  CAS  PubMed  Google Scholar 

  • Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar P, Ponarulselvam S, Amerasan D, Subramaniam J, Hwang JS (2013b) Larvicidal efficacy of Catharanthus roseus Linn. Family: Apocynaceae) leaf extract and bacterial insecticide Bacillus thuringiensis against Anopheles stephensi Liston. Asian Pacific J Trop Med 847–853

  • Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012) Larvicidal avtivity of silver nanoparticles synthesised using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822

    Article  PubMed  Google Scholar 

  • Pavela R (2015) Essential oils for the development of eco-friendly mos- quito larvicides: a review. Ind Crops Prod 76:174–187

    Article  CAS  Google Scholar 

  • Potter DM, Baird MS (2000) Carcinogenic effects of ptaquiloside in bracken fern and related compounds. Br J Cancer 83(7):914–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahuman AA, Gopalarkrishnan G, Saleem G, Arumrgam S, Himalayan B (2000) Effect of Feronia limonia on mosquito larvae. Fitoterapia 71:553–555

    Article  CAS  PubMed  Google Scholar 

  • Raja K, Saravanakumar A, Vijayakumar R (2012) Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage. Spectrochim Acta A Mol Biomol Spectrosc 97:490–494

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar G, Rahuman AA, Chung IM, Vishnu Kirthi A, Marimuthu S, Anbarasan K (2015) Antiplasmodial activity of eco-friendly synthesized palladium nanoparticles using Eclipta prostrata extract against Plasmodium berghei in Swiss albino mice. Parasitol Res 114:1397–1406

    Article  PubMed  Google Scholar 

  • Rajkumar S, Jebanesan A (2008) Bioactivity of flavonoid compounds from Poncirus trifoliata L. (Family: Rutaceae) against the dengue vector, Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 104(1):19–25

    Article  CAS  PubMed  Google Scholar 

  • Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Dinesh D, Suresh U, Khater HF, Wei H, Canale A, Alarfaj AA, Munusamy MA, Higuchi A, Benelli G (2015) Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf. doi:10.1016/j.ecoenv.2015.07.005

    PubMed  Google Scholar 

  • Rueda LM (2008) Global diversity of mosquitoes (Insecta: Diptera: Culicidae) in freshwater. Dev Hydrobiol 595:477–487

    Article  Google Scholar 

  • Runyoro D, Ngassapa O, Vagionas K, Aligiannis N, Graikou K, Chinou I (2010) Chemical composition and antimicrobial activity of the essential oils of four Ocimum species growing in Tanzania. Food Chem 119:311–316

    Article  CAS  Google Scholar 

  • Sathyavathi R, Balamurali Krishna M, Venugopal Rao S, Saritha R, Narayana Rao D (2010) Biosynthesis of silver nanoparticles using Coriandrum Sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 3:1–6

    Article  CAS  Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Food Agric 15(2):22–44

    Google Scholar 

  • Selvaraj P, John De Britto A, Sahayaraj K (2005) Phytoecdysone of Pteridium aquilinum (L) Kuhn (Dennstaedtiaceae) and its pesticidal property on two major pests. Arch Phytopath Plant Protec 38(2):99–105

    Article  CAS  Google Scholar 

  • Shaalan E, Canyon D, Faried MW, Abdel-Wahab H, Mansour A (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int 31:1149–1166

    Article  CAS  PubMed  Google Scholar 

  • Shankar S, Rai S, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Shushni AM, Belkheir A (2011) Antibacterial and antioxidant activities of Mentha piperita L. Arabian J Chem 22:1–7

    Google Scholar 

  • Sinha S, Pan I, Chanda P, Sen SK (2009) Nanoparticles fabrication using ambient biological resources. J Appl Biosci 19:1113–1130

    Google Scholar 

  • Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M (2004) Simple and inexpensive fluorescence-based technique for high through put antimalarial drug screening. Antimicrob Agents Chemother 48:1803–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song YJ, Jang HK, Kim SB (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extract. Process Biochem 44:1133–1138

    Article  CAS  Google Scholar 

  • Stuart BH (2002) Polymer analysis. Wiley, United Kingdom

    Google Scholar 

  • Subbiah P, Tyagi BK (2002) Studies on Bacillus sphaericus toxicity-related resistance development and biology in the filariasis vector, Culex quinquefasciatus (Diptera: Culicidae) from South India. App Entomol Zool 37:365–371

    Article  Google Scholar 

  • Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Chandramohan B, Suresh U, Nicoletti M, Higuchi A, Hwang JS, Kumar S, Alarfaj AA, Munusamy MA, Messing RH (2015) Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ Sci Pollut Res. doi:10.1007/s11356-015-5253-5

    Google Scholar 

  • Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Nicoletti M, Higuchi A, Madhiyazhagan P, Subramaniam J, Dinesh D, Vadivalagan C, Chandramohan B, Alarfaj AA, Munusamy MA, Barnard DR, Benelli G (2015) Green synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res 114:3315–3325

    Article  PubMed  Google Scholar 

  • Sukumar K, Perich MJ, Booba LR (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc 7:210–37

    CAS  PubMed  Google Scholar 

  • Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562

    Article  PubMed  Google Scholar 

  • Susanto H, Feng Y, Ulbricht M (2009) Fouling behavior of aqueous solutions of polyphenolic compounds during ultrafiltration. J Food Eng 91:333–340

    Article  CAS  Google Scholar 

  • Thilagam M, Tamilselvi A, Chandrasekeran B, Rose C (2013) Phytosynthesis of silver nanoparticles using medicinal and dye yielding plant of Bixa orellana L. leaf extract. J Pharma Sci Innov 2:9–13

    Article  CAS  Google Scholar 

  • Tiwari DK, Behari J (2009) Biocidal nature of treatment of Ag-nanoparticle and ultrasonic irradiation in Escherichia coli dh5. Adv Biol Res 3(3-4):89–95

    CAS  Google Scholar 

  • Trager W, Jensen J (1976) Human malaria parasites in continuous culture. Science 193:673–675

    Article  CAS  PubMed  Google Scholar 

  • Tsuda T, Watanabe M, Oshima K, Norinobu S, Choi SW, Kawakishi S (1994) Antioxidative activity of anthocyanin pigments cyaniding 3-0-β-D-glucoside and cyamidin. J Agricul Food Chem 42(11):2407–2410

    Article  CAS  Google Scholar 

  • USDA (2006) National Genetic Resources program. Germplasm Resour Inf Network (GRIN) 31:2948

    Google Scholar 

  • Vahitha R, Venkatachalam MR, Murugan K, Jebanesan A (2002) Larvicidal efficacy of Pavonia zeylanica L. Acacia ferruginea D.C. against Culex quinquefasciatus Say. Bioresour Technol 82:203–204

    Article  CAS  PubMed  Google Scholar 

  • Vimaladevi S, Mahesh A, Dhayanithi BN, Karthikeyan N (2012) Mosquito larvicidal efficacy of phenolic acids of seaweed Chaetomorpha antennina (Bory) Kuetz. against Aedes aegypti. Biologia 67(1):212–216

    Article  CAS  Google Scholar 

  • Wang H, Wu S (2013) Preparation and antioxidant activity of Pteridium aquilinum-derived oligosaccharide. Int J Biol Macromol 61:33–5

    Article  CAS  PubMed  Google Scholar 

  • WHO (2014) Malaria. Fact sheet N°94

  • Xu H, Käll M (2002) Morphology effects on the optical properties of silver nanoparticles. J Nano Nanotech 4:254–259

    Google Scholar 

  • Zhou K, Yu L (2006) Total phenolic contents and antioxidant properties of commonly consumed vegetables grown in Colorado. LWT Food Sci Technol 39:1155–1162

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. C. Panneerselvam is grateful to the University Grant Commission (New Delhi, India), Project No. PDFSS-2014-15-SC-TAM-8566. The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group project No RG-1435-065 (Abdullah A. Alarfaj).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Benelli.

Ethics declarations

All applicable international and national guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of interest

Giovanni Benelli is an Editorial Board Member of Parasitology Research. This does not alter the authors’ adherence to all the Parasitology Research policies on sharing data and materials. The rest of the authors declare that they have no conflicts of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panneerselvam, C., Murugan, K., Roni, M. et al. Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. Parasitol Res 115, 997–1013 (2016). https://doi.org/10.1007/s00436-015-4828-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4828-x

Keywords

Navigation