Parasitology Research

, Volume 115, Issue 3, pp 957–964 | Cite as

Modeling the habitat suitability for the arbovirus vector Aedes albopictus (Diptera: Culicidae) in Germany

  • Lisa K. Koch
  • Sarah Cunze
  • Antje Werblow
  • Judith Kochmann
  • Dorian D. Dörge
  • Heinz Mehlhorn
  • Sven Klimpel
Original Paper


Climatic changes raise the risk of re-emergence of arthropod-borne virus outbreaks globally. These viruses are transmitted by arthropod vectors, often mosquitoes. Due to increasing worldwide trade and tourism, these vector species are often accidentally introduced into many countries beyond their former distribution range. Aedes albopictus, a well-known disease vector, was detected for the first time in Germany in 2007, but seems to have failed establishment until today. However, the species is known to occur in other temperate regions and a risk for establishment in Germany remains, especially in the face of predicted climate change. Thus, the goal of the study was to estimate the potential distribution of Ae. albopictus in Germany. We used ecological niche modeling in order to estimate the potential habitat suitability for this species under current and projected future climatic conditions. According to our model, there are already two areas in western and southern Germany that appear suitable for Ae. albopictus under current climatic conditions. One of these areas lies in Baden-Wuerttemberg, the other in North-Rhine Westphalia in the Ruhr region. Furthermore, projections under future climatic conditions show an increase of the modeled habitat suitability throughout Germany. Ae. albopictus is supposed to be better acclimated to colder temperatures than other tropical vectors and thus, might become, triggered by climate change, a serious threat to public health in Germany. Our modeling results can help optimizing the design of monitoring programs currently in place in Germany.


Asian tiger mosquito Climate change Ecological niche modeling Maxent Species distribution modeling 



This research was funded by the ERA-Net BiodivERsA, with the national funders German Research Foundation (DFG KL 2087/6-1), Austrian Science Fund (FWF I-1437), and The French National Research Agency (ANR-13-EBID-0007-01), part of the 2013 BiodivERsA call for research proposals, by the research funding program “LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts, and by the Senate Competition Committee grant (SAW-2014-SGN-3) of the Leibniz Association.


  1. Adhami J, Reiter P (1998) Introduction and establishment of Aedes (Stegomyia) albopictus Skuse (Diptera: Culicidae) in Albania. J Am Mosq Control Assoc 14:340–343PubMedGoogle Scholar
  2. Aranda C, Eritja R, Roiz D (2006) First record and establishment of the mosquito Aedes albopictus in Spain. Med Vet Entomol 20:150–152. doi: 10.1111/j.1365-2915.2006.00605.x CrossRefPubMedGoogle Scholar
  3. Becker N (2008) Influence of climate change on mosquito development and mosquito-borne diseases in Europe. Parasitol Res 103(Suppl 1):19–28CrossRefGoogle Scholar
  4. Becker N, Geier M, Balczun C, Bradersen U, Huber K, Kiel E, Krueger A, Luehken R, Orendt C, Plenge-Boenig A, Rose A, Schaub GA, Tannich E (2013) Repeated introduction of Aedes albopictus into Germany, July to October 2012. Parasitol Res 112:1787–1790. doi: 10.1007/s00436-012-3230-1 CrossRefPubMedGoogle Scholar
  5. Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector-Borne Zoonotic Dis 7:76–85. doi: 10.1089/vbz.2006.0562 PubMedCentralCrossRefPubMedGoogle Scholar
  6. Brady OJ, Golding N, Pigott DM et al (2014) Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasit Vectors 7:338. doi: 10.1186/1756-3305-7-338 PubMedCentralCrossRefPubMedGoogle Scholar
  7. Cancrini G, Frangipane Di Regalbono A, Ricci I, Tessarin C, Gabrielli S, Pietrobelli M (2003a) Aedes albopictus is a natural vector of Dirofilaria immitis in Italy. Vet Parasitol 118:195–202. doi: 10.1016/j.vetpar.2003.10.011 CrossRefPubMedGoogle Scholar
  8. Cancrini G, Romi R, Gabrielli S, Toma L, Di Paolo M, Scaramozzino P (2003b) First finding of Dirofilaria repens in a natural population of Aedes albopictus. Med Vet Entomol 17:448–451. doi: 10.1111/j.1365-2915.2003.00463.x CrossRefPubMedGoogle Scholar
  9. Dalla Pozza G, Majjori G (1992) First record of Aedes albopictus establishment in Italy. J Am Mosq Control Assoc 8:318–320PubMedGoogle Scholar
  10. Deblauwe I, Demeulemeester J, De Witte J, Hendy A, Sohier C, Madder M (2015) Increased detection of Aedes albopictus in Belgium: no overwintering yet, but an intervention strategy is still lacking. Parasitol Res. doi: 10.1007/s00436-015-4575-z PubMedGoogle Scholar
  11. ECDC (European Centre for Disease Prevention and Control) (2015a) Vector maps. Mosquito maps. Aedes albopictus. Stockholm, Sweden. Accessed 31 July 2015
  12. ECDC (European Centre for Disease Prevention and Control) (2015b) Mosquitoes. Aedes albopictus. Stockholm, Sweden. Accessed 31 July 2015
  13. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, McC. M. Overton J, Townsend Peterson A, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop) 29:129–151. doi: 10.1111/j.2006.0906-7590.04596.x
  14. Eritja R, Escosa R, Lucientes J, Marquès E, Molina R, Roiz D, Ruiz S (2005) Worldwide invasion of vector mosquitoes: present European distribution and challenges for Spain. Biol Invasions 7:87–97CrossRefGoogle Scholar
  15. Faraji A, Egizi A, Fonseca DM, Unlu I, Crepeau T, Healy SP, Gaugler R (2014) Comparative host feeding patterns of the Asian tiger mosquito, Aedes albopictus, in urban and suburban northeastern USA and implications for disease transmission. PLoS Negl Trop Dis 8:e3037. doi: 10.1371/journal.pntd.0003037 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Fischer D, Thomas SM, Niemitz F, Reineking B, Beierkuhnlein C (2011) Projection of climatic suitability for Aedes albopictus Skuse (Culicidae) in Europe under climate change conditions. Glob Planet Chang 78:54–64. doi: 10.1016/j.gloplacha.2011.05.008 CrossRefGoogle Scholar
  17. Fischer D, Thomas SM, Neteler M, Tjaden NB, Beierkuhnlein C (2014) Climatic suitability of Aedes albopictus in Europe referring to climate change projections: comparison of mechanistic and correlative niche modelling approaches. Eurosurveillance 19:1–13Google Scholar
  18. Giatropoulos A, Emmanouel N, Koliopoulos G, Michaelakis A (2012) A study on distribution and seasonal abundance of Aedes albopictus (Diptera: Culicidae) population in Athens, Greece. J Med Entomol 49:262–269CrossRefPubMedGoogle Scholar
  19. Gjenero-Margan I, Aleraj B, Krajcar D, Lesnikar V, Klobučar A, Pem-Novosel I, Kurečić-Filipović S, Komparak S, Martić R, Đuričić S, Betica-Radić L, Okmadžić J, Vilibić-Čavlek T, Babić-Erceg A, Turković B, Avšić-Županc T, Radić I, Ljubić M, Šarac K, BenićN M-GG (2011) Autochthonous dengue fever in Croatia, August–September 2010. Eurosurveillance 16:1–4Google Scholar
  20. Gould EA, Gallian P, De Lamballerie X, Charrel RN (2010) First cases of autochthonous dengue fever and chikungunya fever in France: from bad dream to reality! Clin Microbiol Infect 16:1702–1704. doi: 10.1111/j.1469-0691.2010.03386.x CrossRefPubMedGoogle Scholar
  21. Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Chang Biol 12:2272–2281. doi: 10.1111/j.1365-2486.2006.01256.x CrossRefGoogle Scholar
  22. IPCC (2013) Climate Change 2013: the physical science basis: contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC Fifth Assessment Report: Climate Change 2013 (AR5). Cambridge University Press, Cambridge, New YorkGoogle Scholar
  23. Kampen H, Werner D (2015) Die wiederkehrende Notwendigkeit von Stechmücken-Surveillance und -Forschung. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 58:1101–1109. doi: 10.1007/s00103-015-2218-2 CrossRefGoogle Scholar
  24. Kampen H, Kronefeld M, Zielke D, Werner D (2013) Further specimens of the Asian tiger mosquito Aedes albopictus (Diptera, Culicidae) trapped in southwest Germany. Parasitol Res 112:905–907. doi: 10.1007/s00436-012-3128-y CrossRefPubMedGoogle Scholar
  25. Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, Moore CG, Carvalho RG, Coelho GE, Bortel WV, Hendrickx G, Schaffner F, Elyazar IRF, Teng H-J, Brady OJ, Messina JP, Pigott DM, Scott TW, Smith DL, Wint GRW, Golding N, Hay SI (2015) The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4:1–18. doi: 10.7554/eLife.08347 CrossRefGoogle Scholar
  26. Kumar S, Stohlgren TJ (2009) Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol Nat Environ 1:94–98. doi: 10.3390/d1020118 Google Scholar
  27. La Ruche G, Souarès Y, Armengaud A, Peloux-Petiot F, Delaunay P, Desprès P, Lenglet A, Jourdain F, Leparc-Goffart I, Charlet F, Ollier L, Mantey K, Mollet T, Fournier JP, Torrents R, Leitmeyer K, Hilairet P, Zeller H, Van Bortel W, Dejour-Salamanca D, Grandadam M, Gastellu-Etchegorry M (2010) First two autochrhonous dengue virus infections in metropolitan France, September 2010. Eurosurveillance 15(39):19676PubMedGoogle Scholar
  28. Medlock JM, Avenell D, Barrass I, Leach S (2006) Analysis of the potential for survival and seasonal activity of Aedes albopictus (Diptera: Culicidae) in the United Kingdom. J Vector Ecol 31:292–304CrossRefPubMedGoogle Scholar
  29. Medlock JM, Hansford KM, Versteirt V, Cull B, Kampen H, Fontenille D, Hendrickx G, Zeller H, Van Bortel W, Schaffner F (2015) An entomological review of invasive mosquitoes in Europe. doi:  10.1017/S0007485315000103
  30. Melaun C, Werblow A, Cunze S, Zotzmann S, Koch LK, Mehlhorn H, Doerge DD, Huber K, Tackenberg O, Klimpel S (2015) Modeling of the putative distribution of the arbovirus vector Ochlerotatus japonicus japonicus (Diptera: Culicidae) in Germany. Parasitol Res. doi: 10.1007/s00436-014-4274-1 Google Scholar
  31. Mitchell CJ (1991) Vector competence of North and South American strains of Aedes albopictus for certain arboviruses: a review. J Am Mosq Control Assoc 7:446–451PubMedGoogle Scholar
  32. Moutailler S, Barré H, Vazeille M, Failloux AB (2009) Recently introduced Aedes albopictus in Corsica is competent to chikungunya virus and in a lesser extent to dengue virus. Trop Med Int Heal 14:1105–1109. doi: 10.1111/j.1365-3156.2009.02320.x CrossRefGoogle Scholar
  33. Nawrocki SJ, Hawley WA (1987) Estimation of the northern limits of distribution of Aedes albopictus in North America. J Am Mosq Control Assoc 3:314–317PubMedGoogle Scholar
  34. Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D (2009) Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect 11:1177–1185. doi: 10.1016/j.micinf.2009.05.005 CrossRefPubMedGoogle Scholar
  35. Phillips SJ, Dudík M (2008) Modeling of species distribution with Maxent: new extensions and a comprehensive evaluation. Ecograpy 31:161–175. doi: 10.1111/j.2007.0906-7590.05203.x CrossRefGoogle Scholar
  36. Phillips SJ, Dudik M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. Proceedings of the Twenty-First International Conference on Machine learning. 655–662Google Scholar
  37. Pluskota B, Storch V, Braunbeck T, Beck M, Becker N (2008) First record of Stegomyia albopicta (Skuse) (Diptera : Culicidae) in Germany. Eur Mosq Bull 26:1–5Google Scholar
  38. Reiss H, Cunze S, Koenig K, Neumann H, Kroencke I (2011) Species distribution modelling of marine benthos: a North Sea case study. Mar Ecol Prog Ser 442:71–86. doi: 10.3354/meps09391 CrossRefGoogle Scholar
  39. Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F, Silvi G, Angelini P, Dottori M, Ciufolini MG, Majori GC, Cassone A (2007) Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370:1840–1846. doi: 10.1016/S0140-6736(07)61779-6 CrossRefPubMedGoogle Scholar
  40. Schaffner F, Van Bortel W, Coosemans M (2000) First record of Aedes (Stegomyia) albopictus in Belgium. J Am Mosq Control Assoc 20:201–203Google Scholar
  41. Schaffner F, Boulétreau B, Guillet B, Guilloteau J, Krach S (2001) Aedes albopictus (Skuse, 1894) established in metropolitan France. Eur Mosq Bull 9:1–3Google Scholar
  42. Scholte EJ, Jacobs F, Linton YM, Dijkstra E, Fransen J, Takken W (2007) First record of Aedes (Stegomyia) albopictus in the Netherlands. 22:5–9Google Scholar
  43. Stabach JA, Laporte N, Olupot W (2009) Modeling habitat suitability for Grey crowned-cranes (Balearica regulorum gibbericeps) throughout Uganda. Int J Biodivers Conserv 1:177–186Google Scholar
  44. Tandon N, Ray S (2000) Host feeding pattern of Aedes aegypti and Aedes albopictus in Kolkata, India. Denuge Bull 24:117–120Google Scholar
  45. Thomas S, Obermayr U, Fischer D et al (2012) Low-temperature threshold for egg survival of a post-diapause and non-diapause European aedine strain, Aedes albopictus (Diptera: Culicidae). Parasit Vectors 5:100. doi: 10.1186/1756-3305-5-100 PubMedCentralCrossRefPubMedGoogle Scholar
  46. Trisurat Y, Alkemade R, Arets E (2009) Projecting forest tree distributions and adaptation to climate change in northern Thailand. J Ecol Nat Environ 1:55–63Google Scholar
  47. Valerio L, Marini F, Bongiorno G, Facchinelli L, Pombi M, Caputo B, Maroli M, della Torre A (2010) Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in urban and rural contexts within Rome province, Italy. Vector Borne Zoonotic Dis 10:291–294. doi: 10.1089/vbz.2009.0007 CrossRefPubMedGoogle Scholar
  48. Vazeille M, Jeannin C, Martin E, Schaffner F, Failloux AB (2008) Chikungunya: a risk for Mediterranean countries? Acta Trop 105:200–202. doi: 10.1016/j.actatropica.2007.09.009 CrossRefPubMedGoogle Scholar
  49. Werner D, Kampen H (2015) Aedes albopictus breeding in southern Germany, 2014. Parasitol Res 114(3):831–834. doi: 10.1007/s00436-014-4244-7 CrossRefPubMedGoogle Scholar
  50. Werner D, Kronefeld M, Schaffner F, Kampen H (2012) Two invasive mosquito species, Aedes albopictus and Aedes japonicus japonicus, trapped in southwest Germany, July to August 2011. Eurosurveillance 17:1–4Google Scholar
  51. Zgomba M, Petric D (2008) Risk assessment and management of mosquito-borne diseases in the European region. Sixth Int Conf Urban Pests 29–39Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lisa K. Koch
    • 1
  • Sarah Cunze
    • 1
  • Antje Werblow
    • 1
  • Judith Kochmann
    • 1
  • Dorian D. Dörge
    • 1
  • Heinz Mehlhorn
    • 2
  • Sven Klimpel
    • 1
  1. 1.Institute for Ecology, Evolution and Diversity; Senckenberg Biodiversity and Climate Research Centre (BiK-F); Senckenberg Gesellschaft für Naturforschung (SGN)Goethe-University (GU)Frankfurt/ M.Germany
  2. 2.Institute for ParasitologyHeinrich Heine UniversityDüsseldorfGermany

Personalised recommendations