Parasitology Research

, Volume 115, Issue 2, pp 751–759 | Cite as

Biosynthesis, characterization, and acute toxicity of Berberis tinctoria-fabricated silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides

  • Palanisamy Mahesh Kumar
  • Kadarkarai Murugan
  • Pari Madhiyazhagan
  • Kalimuthu Kovendan
  • Duraisamy Amerasan
  • Balamurugan Chandramohan
  • Devakumar Dinesh
  • Udaiyan Suresh
  • Marcello Nicoletti
  • Mohamad Saleh Alsalhi
  • Sandhanasamy Devanesan
  • Hui Wei
  • Kandasamy Kalimuthu
  • Jiang-Shiou Hwang
  • Annalisa Lo Iacono
  • Giovanni BenelliEmail author
Original Paper


Aedes albopictus is an important arbovirus vector, including dengue. Currently, there is no specific treatment for dengue. Its prevention solely depends on effective vector control measures. In this study, silver nanoparticles (AgNPs) were biosynthesized using a cheap leaf extract of Berberis tinctoria as reducing and stabilizing agent and tested against Ae. albopictus and two mosquito natural enemies. AgNPs were characterized by using UV–vis spectrophotometry, X-ray diffraction, and scanning electron microscopy. In laboratory conditions, the toxicity of AgNPs was evaluated on larvae and pupae of Ae. albopictus. Suitability Index/Predator Safety Factor was assessed on Toxorhynchites splendens and Mesocyclops thermocyclopoides. The leaf extract of B. tinctoria was toxic against larval instars (I–IV) and pupae of Ae. albopictus; LC50 was 182.72 ppm (I instar), 230.99 ppm (II), 269.65 ppm (III), 321.75 ppm (IV), and 359.71 ppm (pupa). B. tinctoria-synthesized AgNPs were highly effective, with LC50 of 4.97 ppm (I instar), 5.97 ppm (II), 7.60 ppm (III), 9.65 ppm (IV), and 14.87 ppm (pupa). Both the leaf extract and AgNPs showed reduced toxicity against the mosquito natural enemies M. thermocyclopoides and T. splendens. Overall, this study firstly shed light on effectiveness of B. tinctoria-synthesized AgNPs as an eco-friendly nanopesticide, highlighting the concrete possibility to employ this newer and safer tool in arbovirus vector control programs.


Arbovirus Copepods Culicidae Dengue Predaceous mosquito larvae Predatory safety factor SEM Suitability index XRD 



The authors would like to thank the financial support rendered by King Saud University, through Vice Deanship of Research Chairs. The authors are grateful to the UGC-MRP, New Delhi, India (No. F. No.36-250/2008 (SR) 24/03/2009) and the Department of Physics and Astronomy, King Saud University (project no. RGP-1435- 057) for their financial support.

Compliance with ethical standards

All applicable international and national guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of interest

The authors declare no conflicts of interest. G. Benelli is an Editorial Board Member of Parasitology Research. This does not alter the author’s adherence to all the Parasitology Research policies on sharing data and materials.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Aditya G, Ash A, Saha GK (2006) Predatory activity of Rhantus sikkimensis and larvae of Toxorhynchites splendens on mosquito larvae in Darjeeling, India. J Vector Borne Dis 43:66–72PubMedGoogle Scholar
  2. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium zoxysporum. Colloids Surf B: Biointerfaces 28:313–318CrossRefGoogle Scholar
  3. Amer A, Mehlhorn H (2006a) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490CrossRefPubMedGoogle Scholar
  4. Amer A, Mehlhorn H (2006b) The sensilla of Aedes and Anopheles mosquitoes and their importance in repellency. Parasitol Res 99:491–499CrossRefPubMedGoogle Scholar
  5. Amer A, Mehlhorn H (2006c) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472CrossRefPubMedGoogle Scholar
  6. Amer A, Mehlhorn H (2006d) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477CrossRefPubMedGoogle Scholar
  7. Bagavan A, Kamaraj C, Elango G, AbduzZahir A, Abdul Rahuman A (2009) Adulticidal and larvicidal efficacy of some medicinal plant extracts against tick, fluke and mosquitoes. Vet Parasitol 166:286–292CrossRefPubMedGoogle Scholar
  8. Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805CrossRefPubMedGoogle Scholar
  9. Benelli G (2015b) The best time to have sex: mating behaviour and effect of daylight time on male sexual competitiveness in the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae). Parasitol Res 114:887–894CrossRefPubMedGoogle Scholar
  10. Benelli G (2015c) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114:3201–3212CrossRefPubMedGoogle Scholar
  11. Benelli G (2016) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res. doi: 10.1007/s00436-015-4800-9
  12. Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114:391–397CrossRefPubMedGoogle Scholar
  13. Bowatte G, Perera P, Senevirathne G, Meegaskumbura S, Meegaskumbura M (2013) Tadpoles as dengue mosquito (Aedes aegypti) egg predators. Biol Control 67:469–47CrossRefGoogle Scholar
  14. Caminade C, Medlock JM, Ducheyne E, Mc Intryre KM, Leach S, Baylis M, Morse A (2012) Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface 9:2708–2717PubMedCentralCrossRefPubMedGoogle Scholar
  15. Deo PG, Hasan SB, Majumdar SK (1998) Toxicity and suitability of some insecticides for household use. Int Pest Control 30:118–129Google Scholar
  16. Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529CrossRefPubMedGoogle Scholar
  17. Finney DJ (1971) Probit analysis. Cambridge University Press, London, pp 68–78Google Scholar
  18. Focks DA (1985) Toxorhynchites. In: H.C Chapman (ed.), Biological control of mosquitoes. J Am Mosq Control Assoc Bull 6:42-45Google Scholar
  19. Govindarajan M, Rajeswary M, Veerakumar K, Muthukumaran U, Hoti SL, Mehlhorn H, Barnard DR, Benelli G (2016) Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control. Parasitol Res. doi: 10.1007/s00436-015-4794-3
  20. Haldar KM, Haldar B, Chandra G (2013) Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall.). Parasitol Res 112:1451–1459CrossRefPubMedGoogle Scholar
  21. Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391CrossRefPubMedGoogle Scholar
  22. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104–105115CrossRefGoogle Scholar
  23. Hurlbut HS (1938) Copepod observed preying on first instar larva of Anopheles quadrimaculatus. J Parasitol 24:281CrossRefGoogle Scholar
  24. Kalimuthu K, Lin SM, Tseng LC, Murugan K, Hwang JS (2014) Bio-efficacy potential of seaweed Gracilaria firma with copepod, Megacyclops formosanus for the control larvae of dengue vector Aedes aegypti. Hydrobiology 741:113–123CrossRefGoogle Scholar
  25. Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B 76:50–56CrossRefGoogle Scholar
  26. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157CrossRefGoogle Scholar
  27. Mahesh Kumar P, Murugan K, Kovendan K, Panneerselvam C, Prasanna Kumar K, Amerasan D, Subramaniam J, Kalimuthu K, Nataraj T (2012) Mosquitocidal activity of Solanum xanthocarpum fruit extract and copepod Mesocyclops thermocyclopoides for the control of dengue vector Aedes aegypti. Parasitol Res 111:609–618CrossRefPubMedGoogle Scholar
  28. Manrique-Saide P, Ibanez-Bernal S, Delfin-Gonzalez H, Parra Tabla V (1998) Mesocyclops longisetus effects on survivorship of Aedes aegypti immature stages in car tyres. Med Vet Entomol 12:386–390CrossRefPubMedGoogle Scholar
  29. Marten GG, Astaiza R, Suarez MF, Monje C, Reid JW (1989) Natural control of larval Anopheles albuminus (Diptera: Culicidae) by the predator Mesocyclops (Copepoda: Cyclopoida). J Med Entomol 26:624–662CrossRefPubMedGoogle Scholar
  30. Mehlhorn H, Al-Rasheid KAS, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265CrossRefPubMedGoogle Scholar
  31. Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Mahesh Kumar P, Subramaniam J, Suresh U (2015a) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114:2243–2253CrossRefPubMedGoogle Scholar
  32. Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138CrossRefPubMedGoogle Scholar
  33. Murugan K, Priyanka V, Dinesh D, Madhiyazhagan P, Panneerselvam C, Subramaniam J, Suresh U, Chandramohan B, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Khater HF, Messing RH, Benelli G (2015c) Enhanced predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector Aedes aegypti in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol Res. doi: 10.1007/s00436-015-4582-0 Google Scholar
  34. Murugan K, Venus JSE, Panneerselvam C, Bedini S, Conti B, Nicoletti M, Kumar Sarkar S, Hwang JS, Subramaniam J, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Suresh U, Benelli G (2015d) Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus? Environ Sci Pollut Res. doi: 10.1007/s11356-015-4920-x Google Scholar
  35. Murugan K, Sanoopa CP, Madhiyazhagan P, Dinesh D, Subramaniam J, Panneerselvam C, Roni M, Suresh U, Nicoletti M, Alarfaj AA, Munusamy MA, Higuchi A, Kumar S, Perumalsamy H, Ahn JY, Benelli G (2015e) Rapid biosynthesis of silver nanoparticles using Crotalaria verrucosa leaves against the dengue vector Aedes aegypti: what happens around? An analysis of dragonfly predatory behaviour after exposure at ultra-low doses. Nat Prod Res. doi: 10.1080/14786419.2015.1074230 Google Scholar
  36. Murugan K, Dinesh D, Jenil Kumar P, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Suresh U, Nicoletti M, Alarfaj AA, Munusamy MA, Higuchi A, Mehlhorn H, Benelli G (2015f) Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitol Res. doi: 10.1007/s00436-015-4710-x Google Scholar
  37. Murugan K, Vadivalagan C, Karthika P, Panneerselvam C, Paulpandi M, Subramaniam J, Wei H, Al Thabiani A, Saleh Alsalhi M, Devanesan S, Nicoletti M, Paramasivan R, Parajulee MN, Benelli G (2016a) DNA barcoding and molecular evolution of mosquito vectors of medical and veterinary importance. Parasitol Res. doi: 10.1007/s00436-015-4726-2
  38. Murugan K, Aruna P, Panneerselvam C, Madhiyazhagan P, Paulpandi M, Subramaniam J, Rajaganesh R, Wei H, Saleh Alsalhi M, Devanesan S, Nicoletti M, Syuhei B, Canale A, Benelli G (2016b) Fighting arboviral diseases: low toxicity on mammalian cells, dengue growth inhibition (in vitro) and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles. Parasitol Res. doi: 10.1007/s00436-015-4783-6
  39. Murugesh KS, Yeligar VC, Maiti BC, Maity TK (2005) Hepatoprotective and antioxidant activity role of Berberis tinctoria Lesch.leaves on paracetamol induced hepatic damage in rats. Iran J Pharmacol Ther 4:64–69Google Scholar
  40. Nicoletti M, Mariani S, Maccioni O, Coccioletti T, Murugan K (2012) Neem cake: chemical composition and larvicidal activity on Asian tiger mosquito. Parasitol Res 111:205–2013CrossRefPubMedGoogle Scholar
  41. Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012a) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822CrossRefPubMedGoogle Scholar
  42. Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK (2012b) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata. Parasitol Res 111:555–562CrossRefPubMedGoogle Scholar
  43. Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D (2009) Aedes albopictus, an arbovirus vector: from the darkness to light. Microb Infect 11:1177–1185CrossRefGoogle Scholar
  44. Pavela R (2008) Larvicidal effects of various Euro-Asiatic plants against Culex quinquefasciatus Say larvae (Diptera: Culicidae). Parasitol Res 102:555–559CrossRefPubMedGoogle Scholar
  45. Pavela R (2009) Larvicidal effects of some Euro-Asiatic plants against Culex quinquefasciatus Say larvae (Diptera: Culicidae). Parasitol Res 105:887–892CrossRefPubMedGoogle Scholar
  46. Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crop Prod 76:174–187CrossRefGoogle Scholar
  47. Prasad TNVKV, Elumalai EK (2011) Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pac J Trop Biomed 1:439–442PubMedCentralCrossRefPubMedGoogle Scholar
  48. Ramanibai R, Velayutham K (2015) Bioactive compound synthesis of Ag nanoparticles from leaves of Melia azedarach and its control for mosquito larvae. Res Vet Sci 98:82–88CrossRefPubMedGoogle Scholar
  49. Rawani A, Ghosh A, Chandra G (2013) Mosquito larvicidal and anti-microbial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop 128:613–622CrossRefPubMedGoogle Scholar
  50. Rawlins SC, Clark GG, Martinez R (1991) Effects of single introduction of Toxorhynchites moctezuma upon Aedes aegypti on a Caribbean island. J Am Mosq Control Assoc 7:7–10PubMedGoogle Scholar
  51. Rawlins SC, Martinez R, Wiltshire S, Clarke D, Prabhaka P, Spinks M (1997) Evaluation of Caribbean strains of Macrocyclops and Mesocyclops (Cyclopoida: Cyclopidae) as biological control tools for the dengue vector, Aedes aegypti. J Am Mosq Control Assoc 13:18–23PubMedGoogle Scholar
  52. Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Dinesh D, Suresh U, Khater HF, Wei H, Canale A, Alarfaj AA, Munusamy MA, Higuchi A, Benelli G (2015) Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf 121:31–38CrossRefPubMedGoogle Scholar
  53. Saha P, Bhattacharjee S, Sarkar A, Manna A, Majumder S, et al. (2011) Berberine chloride mediates its anti-leishmanial activity via differential regulation of the mitogen activated protein kinase pathway in macrophages. PLoS ONE 6(4):e18467. doi: 10.1371/journal.pone.0018467
  54. Santhoshkumar T, Rahuman AA, Rajkumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vector. Parasitol Res 108:693–702CrossRefPubMedGoogle Scholar
  55. Sasikumar JM, Thayumanavan THA, Subashkumar R, Janardhanan K, Lakshmana Perumalsamy P (2007) Antibacterial activity of some ethnomedicinal plants from the Nilgiris, Tamil Nadu, India. Nat Prod Rad 6:34–39Google Scholar
  56. Sathyavathi R, Balamurali Krishna M, Venugopal Rao S, Saritha R, Narayana Rao D (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 3:1–6CrossRefGoogle Scholar
  57. Schaper S, Hernández F (1998) La Luchacontrael dengue Mesocyclops thermocyclopoides: un posible control biológico para larvas de Aedes aegypti. Rev Cost Cienc Med 19:119–125Google Scholar
  58. Shin SH, Ye MK, Kim HS (2007) The effects of nanosilver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunol Pharmacol 7:1813–1818Google Scholar
  59. Shrivastava S, Dash D (2010) Label-free colorimetric estimation of proteins using nanoparticles of silver. Nano-Micro Lett 2:164–168CrossRefGoogle Scholar
  60. Sivagnaname N, Kalyanasundaram M (2004) Laboratory evaluation of methanolic extract of Atlantia monophylla (Family: Rutaceae) against immature stages of mosquitoes and non-target organisms. Mem Inst Oswaldo Cruz 99:115–118CrossRefPubMedGoogle Scholar
  61. Steffan WA (1975) Systematics and biological control potential of Toxorhynchites (Diptera: Culicidae). Mosq Syst 7:59–67Google Scholar
  62. Steffan WA, Evenhuis NL (1981) Biology of Toxorhynchites. Ann Rev Entomol 26:159–181CrossRefGoogle Scholar
  63. Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 112:487–499CrossRefPubMedGoogle Scholar
  64. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Chandramohan B, Suresh U, Nicoletti M, Higuchi A, Hwang JS, Kumar S, Alarfaj AA, Munusamy MA, Messing RH, Benelli G (2015) Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ Sci Pollut Res. doi: 10.1007/s11356-015-5253-5 Google Scholar
  65. Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Nicoletti M, Higuchi A, Madhiyazhagan P, Subramaniam J, Dinesh D, Vadivalagan C, Chandramohan B, Alarfaj AA, Munusamy MA, Barnard DR, Benelli G (2015) Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res. doi: 10.1007/s00436-015-4556-2 Google Scholar
  66. Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562CrossRefPubMedGoogle Scholar
  67. Williamson CE (1999) Ecology and classification of North American freshwater invertebrates. Academic Press Inc., San Diego, pp 787–822Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Palanisamy Mahesh Kumar
    • 1
  • Kadarkarai Murugan
    • 1
  • Pari Madhiyazhagan
    • 1
  • Kalimuthu Kovendan
    • 1
  • Duraisamy Amerasan
    • 1
  • Balamurugan Chandramohan
    • 1
  • Devakumar Dinesh
    • 1
  • Udaiyan Suresh
    • 1
  • Marcello Nicoletti
    • 2
  • Mohamad Saleh Alsalhi
    • 3
  • Sandhanasamy Devanesan
    • 3
  • Hui Wei
    • 4
  • Kandasamy Kalimuthu
    • 1
    • 5
  • Jiang-Shiou Hwang
    • 5
  • Annalisa Lo Iacono
    • 6
  • Giovanni Benelli
    • 7
    Email author
  1. 1.Division of Entomology, Department of Zoology, School of Life SciencesBharathiar UniversityCoimbatoreIndia
  2. 2.Department of Environmental BiologyUniversity Sapienza of RomeRomeItaly
  3. 3.Department of Physics and Astronomy, Research Chair in Laser Diagnosis of CancerKing Saud UniversityRiyadhKingdom of Saudi Arabia
  4. 4.Institute of Plant ProtectionFujian Academy of Agricultural SciencesFuzhouChina
  5. 5.Institute of Marine BiologyNational Taiwan Ocean UniversityKeelungTaiwan
  6. 6.AgronomistPisaItaly
  7. 7.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly

Personalised recommendations