Parasitology Research

, Volume 115, Issue 2, pp 723–733 | Cite as

Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control

  • Marimuthu Govindarajan
  • Mohan Rajeswary
  • Kaliyan Veerakumar
  • Udaiyan Muthukumaran
  • S. L. Hoti
  • Heinz Mehlhorn
  • Donald R. Barnard
  • Giovanni Benelli
Original Paper

Abstract

Mosquito vectors are responsible for transmitting diseases such as malaria, dengue, chikungunya, Japanese encephalitis, dengue, and lymphatic filariasis. The use of synthetic insecticides to control mosquito vectors has caused physiological resistance and adverse environmental effects, in addition to high operational cost. Biosynthesis of silver nanoparticles has been proposed as an alternative to traditional control tools. In the present study, green synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Bauhinia variegata by reduction of Ag+ ions from silver nitrate solution has been investigated. The bioreduced silver nanoparticles were characterized by UV–visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and X-ray diffraction analysis (XRD). Leaf extract and synthesized AgNPs were evaluated against the larvae of Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Compared to aqueous extract, synthesized AgNPs showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 and LC90 values of 41.96, 46.16, and 51.92 μg/mL and 82.93, 89.42, and 97.12 μg/mL, respectively. Overall, this study proves that B. variegata is a potential bioresource for stable, reproducible nanoparticle synthesis and may be proposed as an efficient mosquito control agent.

Keywords

Arbovirus Eco-friendly larvicide Japanese encephalitis Malaria Mosquito-borne diseases Nanotechnology 

References

  1. Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472CrossRefPubMedGoogle Scholar
  2. Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490CrossRefPubMedGoogle Scholar
  3. Amer A, Mehlhorn H (2006c) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477CrossRefPubMedGoogle Scholar
  4. Amer A, Mehlhorn H (2006d) The sensilla of Aedes and Anopheles mosquitoes and their importance in repellency. Parasitol Res 99:491–499CrossRefPubMedGoogle Scholar
  5. Amerasan D, Nataraj T, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Benelli G (2015) Mico-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci. doi:10.1007/s10340-015-0675-x Google Scholar
  6. Amerasinghe PH, Amerasinghe FP (1999) Multiple host feeding in field populations of Anopheles culicifacies and Anopheles subpictus in Sri Lanka. Med Vet Entomol 13(2):124–131CrossRefPubMedGoogle Scholar
  7. Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector Borne Zoonotic Dis 12(3):262–268CrossRefPubMedGoogle Scholar
  8. Azizullah A, Rehman ZU, Ali I, Murad W, Muhammad N, Ullah W, Hader D-P (2014) Chlorophyll derivatives can be an efficient weapon in the fight against dengue. Parasitol Res 113:4321–4326CrossRefPubMedGoogle Scholar
  9. Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vect Born Zoon Dis 7:76–85CrossRefGoogle Scholar
  10. Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805CrossRefPubMedGoogle Scholar
  11. Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114:3201–3212CrossRefPubMedGoogle Scholar
  12. Benelli G (2016) Plant-synthesized nanoparticles: an eco-friendly tool against mosquito vectors? Springer International Publishing Switzerland, H. Mehlhorn (ed.), Nanoparticles in the Fight Against Parasites - Parasitology Research Monographs Chapter 8, doi:10.1007/978-3-319-25292-6_8 (ISSN: 2192-3671)
  13. Benelli G, Flamini G, Fiore G, Cioni PL, Conti B (2013a) Larvicidal and repellent activity of the essential oil of Coriandrum sativum L. (Apiaceae) fruits against the filariasis vector Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 112:1155–1161CrossRefPubMedGoogle Scholar
  14. Benelli G, Canale A, Conti B (2013b) Eco-friendly control strategies against the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae): repellency and toxic activity of plant essential oils and extracts. Pharmacologyonline 47:44–51Google Scholar
  15. Benelli G, Bedini S, Cosci F, Toniolo C, Conti B, Nicoletti M (2015a) Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res 114:227–236CrossRefPubMedGoogle Scholar
  16. Benelli G, Bedini S, Flamini G, Cosci F, Cioni PL, Amira S, Benchikh F, Laouer H, Di Giuseppe G, Conti B (2015b) Mediterranean essential oils as effective weapons against the West Nile vector Culex pipiens and the Echinostoma intermediate host Physella acuta: what happens around? An acute toxicity survey on non-target mayflies. Parasitol Res 114:1011–1021CrossRefPubMedGoogle Scholar
  17. Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015c) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114:391–397CrossRefPubMedGoogle Scholar
  18. Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nanoparticles—a recent approach to insect pest control. Afr J Biotechnol 9:3489–3493Google Scholar
  19. Caminade C, Medlock JM, Ducheyne E, McIntryre KM, Leach S, Baylis M, Morse A (2012) Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface 9:2708–2717PubMedCentralCrossRefPubMedGoogle Scholar
  20. Cavalcanti ESB, Morais SM, Lima MAA, Santana EWP (2004) Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz 99:541–544CrossRefPubMedGoogle Scholar
  21. Chansang U, Zahiri NS, Bansiddhi J, Boonruad T, Thongsrirak P, Mingmuang J (2005) Mosquito larvicidal activity of aqueous extracts of long pepper (Piper retrofractum Vahl) from Thailand. J Vector Ecol 30:195–200PubMedGoogle Scholar
  22. Cheng SS, Chang HT, Chang ST, Tsai KH, Chen WJ (2003) Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour Technol 89:99–102CrossRefPubMedGoogle Scholar
  23. Chowdhury N, Chatterjee SK, Laskar S, Chandra G (2009) Larvicidal activity of Solanum villosum Mill (Solanaceae: Solanales) leaves to Anopheles subpictus Grassi (Diptera: Culicidae) with effect on non-target Chironomus circumdatus Kieffer (Diptera: Chironomidae). J Pest Sci 82:13–18CrossRefGoogle Scholar
  24. Conti B, Benelli G, Flamini G, Cioni PL, Profeti R, Ceccarini L, Macchia M, Canale A (2012) Larvicidal and repellent activity of Hyptis suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 110:2013–2021CrossRefPubMedGoogle Scholar
  25. Das NG, Nath DR, Baruah I (2000) Field evaluation of herbal mosquito repellents. J Comb Des 31(4):241–245Google Scholar
  26. Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529CrossRefPubMedGoogle Scholar
  27. Elumalai EK, Prasad TN, Hemachandran J, Therasa VS, Thirumalai T, David E (2010) Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J Pharm Sci Res 2:549–554Google Scholar
  28. Finney DJ (1971) Probit analysis, vol 551. Cambridge University Press, London, pp 68–72Google Scholar
  29. Frederich M, Dogné JM, Angenot L, DeMol P (2002) New trends in antimalarial agents. Curr Med Chem 9:1435–1456CrossRefPubMedGoogle Scholar
  30. Georges K, Jayaprakasam B, Dalavoy SS, Nair MG (2008) Pest-managing activities of plant extracts and anthraquinones from Cassia nigricans from Burkina Faso. Bioresour Technol 99:2037–2045CrossRefPubMedGoogle Scholar
  31. Govindarajan M (2010a) Larvicidal and repellent activities of Sida acuta Burm. F. (family: Malvaceae) against three important vector mosquitoes. Asia Pac J Trop Med 3:691–695CrossRefGoogle Scholar
  32. Govindarajan M (2010b) Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (willd.) Hook. F. Benth (Rutaceae) against three mosquito species. Asia Pac J Trop Med 3:874–877CrossRefGoogle Scholar
  33. Govindarajan M (2011a) Mosquito larvicidal and ovicidal activity of Cardiospermum halicacabum Linn. (family: Sapindaceae) leaf extract against Culex quinquefasciatus (say.) and Aedes aegypti (Linn.) (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 15(7):787–794PubMedGoogle Scholar
  34. Govindarajan M (2011b) Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asia Pac J Trop Med 4(2):106–111CrossRefGoogle Scholar
  35. Govindarajan M, Jebanesan A, Pushpanathan T (2008) Larvicidal and ovicidal activity of Cassia fistula Linn. Leaf extract against filarial and malarial vector mosquitoes. Parasitol Res 102:289–292CrossRefPubMedGoogle Scholar
  36. Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011a) Mosquito larvicidal, ovicidal and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 109:353–367CrossRefPubMedGoogle Scholar
  37. Govindarajan M, Sivakumar R, Rajeswari M, Yogalakshmi K (2011b) Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol Res 110:2023–2032CrossRefPubMedGoogle Scholar
  38. Govindarajan M, Sivakumar R, Rajeswary M, Yogalakshmi K (2013) Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Exp Parasitol 134:7–11CrossRefPubMedGoogle Scholar
  39. Jensen M, Mehlhorn H (2009) Seventy-five years of Resochin® in the fight against malaria. Parasitol Res 105:609–627CrossRefPubMedGoogle Scholar
  40. Keiser J, Maltese MF, Erlanger TE, Bos R, Tanner M, Singer BH, Utzinger J (2005) Effect of irrigated rice agriculture on Japanese encephalitis, including challenges and opportunities for integrated vector management. Acta Trop 95:40–57CrossRefPubMedGoogle Scholar
  41. Kimbaris AC, Koliopoulos G, Michaelakis A, Konstantopoulou MA (2012) Bioactivity of Dianthus caryophyllus, Lepidium sativum, Pimpinella anisum, and Illicium verum essential oils and their major components against the West Nile vector Culex pipiens. Parasitol Res 111:2403–2410CrossRefPubMedGoogle Scholar
  42. Liu ZL, He Q, Chu SS, Wang CF, Du SS, Deng ZW (2012) Essential oil composition and larvicidal activity of Saussurea lappa roots against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res 110:2125–2130CrossRefPubMedGoogle Scholar
  43. Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108(6):1541–1549CrossRefPubMedGoogle Scholar
  44. Mehlhorn H (2008) Encyclopedia of parasitology, 3rd edn. Springer, HeidelbergCrossRefGoogle Scholar
  45. Mehlhorn H (ed) (2011) Nature helps. How plants and other organisms contribute to solve health problems. Parasitol Res monographs. Springer, Berlin, pp 1–372Google Scholar
  46. Mehlhorn H, Schmahl G, Schmidt J (2005) Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol Res 95:363–365CrossRefPubMedGoogle Scholar
  47. Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265CrossRefPubMedGoogle Scholar
  48. Miao AJ, Luo Z, Chen CS, Chin WC, Santschi PH, Quigg A (2010) Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS One 5:15196CrossRefGoogle Scholar
  49. Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Mahesh Kumar P, Subramaniam J, Suresh U (2015a) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114(6):2243–2253CrossRefPubMedGoogle Scholar
  50. Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138CrossRefPubMedGoogle Scholar
  51. Murugan K, Priyanka V, Dinesh D, Madhiyazhagan P, Panneerselvam C, Subramaniam J, Suresh U, Chandramohan B, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Khater HF, Messing RH, Benelli G (2015c) Enhanced predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector Aedes aegypti in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol Res. doi:10.1007/s00436-015-4582-0 Google Scholar
  52. Murugan K, Venus JSE, Panneerselvam C, Bedini S, Conti B, Nicoletti M, Kumar Sarkar S, Hwang JS, Subramaniam J, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Suresh U, Benelli G (2015d) Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus? Environ Sci Pollut Res. doi:10.1007/ s11356-015-4920-x Google Scholar
  53. Muthukumaran U, Govindarajan M, Rajeswary M, Hoti SL (2015) Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes. Parasitol Res 114(5):1817–1827CrossRefPubMedGoogle Scholar
  54. Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunkhe BK (2012) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and non target fish Poecillia reticulata. Parasitol Res 111(2):555–562CrossRefPubMedGoogle Scholar
  55. Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D (2009) Aedes albopictus, an arbovirus vector: from the darkness to light. Microbiol Infect 11:1177–1185CrossRefGoogle Scholar
  56. Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn G. Don and their antiplasmodial activities. Asia Pac J Trop Biomed 2(7):574–580CrossRefGoogle Scholar
  57. Priyadarshini K, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang J-S, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111(3):997–1006CrossRefPubMedGoogle Scholar
  58. Rahuman AA, Gopalarkrishnan G, Saleem G, Arumrgam S, Himalayan B (2000) Effect of Feronia limonia on mosquito larvae. Fitoterapia 71:553–555CrossRefPubMedGoogle Scholar
  59. Ravi V, Vanajakshi S, Gowda A, Chandramuki A (1989) A laboratory diagnosis of Japanese encephalitis using monoclonal antibodies and correlation of findings with the outcome. J Med Virol 29:221–223CrossRefPubMedGoogle Scholar
  60. Roni M, Murugan K, Panneerselvam C, Subramaniam J, Hwang JS (2013) Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:981–990CrossRefPubMedGoogle Scholar
  61. Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 109:823–831CrossRefPubMedGoogle Scholar
  62. Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108:693–702CrossRefPubMedGoogle Scholar
  63. Sathyavathi R, Balamurali Krishna M, Venugopal Rao S, Saritha R, Narayana Rao D (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 3:1–6CrossRefGoogle Scholar
  64. Semmler M, Abdel-Ghaffar F, Al-Rasheid KAS, Mehlhorn H (2009) Nature helps: from research to products against blood sucking arthropods. Parasitol Res 105:1483–1487CrossRefPubMedGoogle Scholar
  65. Senthilkumar N, Varma P, Gurusubramanian G (2009) Larvicidal and adulticidal activities of some medicinal plants against the malarial vector, Anopheles stephensi (Liston). Parasitol Res 104:237–244CrossRefPubMedGoogle Scholar
  66. Sinha S, Pan I, Chanda P, Sen SK (2009) Nanoparticles fabrication using ambient biological resources. J Appl Biol Sci 19:1113–1130Google Scholar
  67. Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184CrossRefPubMedGoogle Scholar
  68. Suman DS, Shrivastava AR, Parashar BD, Pant SC, Agrawal OP, Prakash S (2008) Scanning electron microscopic studies on egg surface morphology and morphometrics of Culex tritaeniorhynchus and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 104:173–176CrossRefPubMedGoogle Scholar
  69. Sumroiphon S, Yuwaree C, Arunlertaree C, Komalamisra N, Rongsriyam Y (2006) Bioactivity of citrus seed for mosquito-borne diseases larval control. Southeast Asian J Trop Med Public Health 37(3):123–127PubMedGoogle Scholar
  70. Tiwary M, Naik SN, Tewaryb DK, Mittalc PK, Yadavc S (2007) Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. J Vector Borne Dis 44:198–204PubMedGoogle Scholar
  71. Veerekumar K, Govindarajan M, Rajeswary M (2013) Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112(12):4073–4085CrossRefGoogle Scholar
  72. Veerekumar K, Govindarajan M, Rajeswary M (2014) Low-cost and ecofriendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:1775–1785CrossRefGoogle Scholar
  73. WHO (2014) Malaria. Fact sheet no. 94Google Scholar
  74. World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides. Communicable disease control, prevention and eradication, WHO pesticide evaluation scheme. WHO, Geneva, WHO/CDS/WHOPES/GCDPP/1.3Google Scholar
  75. Yadav R, Srivastava VK, Chandra R, Singh A (2002) Larvicidal activity of latex and stem bark of Euphorbia tirucalli plant on the mosquito Culex quinquefasciatus. J Commun Dis 34:264–269PubMedGoogle Scholar
  76. Yenesew A, Derese S, Midiwo JO, Heydenreich M, Peter MG (2003) Effect of rotenoids from the seeds of Millettia dura on larvae of Aedes aegypti. Pest Manag Sci 59:1159–1161CrossRefPubMedGoogle Scholar
  77. Zhu L, Tian Y (2011) Chemical composition and larvicidal activity of Blumea densiflora essential oils against Anopheles anthropophagus: a malarial vector mosquito. Parasitol Res 109:1417–1422CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Marimuthu Govindarajan
    • 1
  • Mohan Rajeswary
    • 1
  • Kaliyan Veerakumar
    • 1
  • Udaiyan Muthukumaran
    • 1
  • S. L. Hoti
    • 2
  • Heinz Mehlhorn
    • 3
  • Donald R. Barnard
    • 4
  • Giovanni Benelli
    • 5
  1. 1.Unit of Vector Control, Phytochemistry and Nanotechnology, Department of ZoologyAnnamalai UniversityAnnamalai NagarIndia
  2. 2.Regional Medical Research CentreBelgaumIndia
  3. 3.Department of ParasitologyHeinrich Heine UniversityDüsseldorfGermany
  4. 4.Center for Medical, Agricultural, and Veterinary EntomologyUSDA-ARSGainesvilleUSA
  5. 5.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly

Personalised recommendations