Advertisement

Parasitology Research

, Volume 115, Issue 1, pp 131–141 | Cite as

Where are the sensory organs of Nybelinia surmenicola (Trypanorhyncha)? A comparative analysis with Parachristianella sp. and other trypanorhynchean cestodes

  • Natalia M. Biserova
  • Ilya I. Gordeev
  • Janetta V. KornevaEmail author
Original Paper

Abstract

The sensory organs in tegument of two trypanorhynchean species—Nybelinia surmenicola (plerocercoid) and adult Parachristianella sp. (Cestoda, Trypanorhyncha)—were studied with the aim of ultrastructural description and a comparative analysis. The Nybelinia surmenicola plerocercoid lacks papillae with sensory cilia on the bothria adhesive surface. We found an unciliated sensory organ within the median bothria fold. This unciliated free nerve ending contains the central electron-dense disc, three dense supporting rings, and broad root. The nerve ending locates in the basal matrix under the tegument. The tegument of N. surmenicola has a number of ultrastructural features which make it significantly different from other Trypanorhyncha: (i) the tegumental cytoplasm has a plicated constitution in a form of high apical and deep basal folds, (ii) numerous layers of the basal matrix are presented in the subtegument, and (iii) the squamiform and bristlelike microtriches N. surmenicola lack the base and the basal plate. In contrast, numerous ciliated and unciliated receptors were found in Parachristianella sp.: six types on the bothria and one type in the strobila tegument. Ultrastructural constitution of sensory organs in the form of ciliated free nerve endings as well as unciliated basal nerve endings of Parachristianella sp. has many common features inside Eucestoda. In comparison with other Trypanorhyncha, all Nybelinia species studied have less quantity of the bothrial sensory organs. This fact may reflect behavioral patterns of Nybelinia as well as phylogenetic position into Trypanorhyncha. Our observations of living animals conventionally demonstrate the ability of N. surmenicola plerocercoids to locomote in forward direction on the Petri dish surface. The participation of the bothrial microtriches in a parasite movement has been discussed.

Keywords

Cestoda Trypanorhyncha Fine structure Receptors Microtriches Tegument 

Notes

Acknowledgments

This work was supported by the Russian Foundation of Fundamental Researches (I.I.G. grant № 14-01-31950; J.V.K. grant № 5-04-03785; N.M.B. grant 15-04-0264515) and the Program of Leading Scientific Schools (1801.2014.4). Electron microscopy investigations were supported by the Russian Scientific Fund (14-50-00029). We are grateful to S. Metelev (Laboratory of Electron Microscopy, I.D. Papanin Institute for Biology of Inland Waters) and A. Bogdanov (Laboratory of Electron Microscopy, Moscow State University) for the technical assistance. We thank Prof. Dr. H.-J. Pflüger (Freie Universität Berlin, Institut für Biologie - Neurobiologie, Berlin, Germany) for consultations and remarks.

Compliance with ethics requirements

We carefully reviewed the ethical standards of the journal and we hereby certify that the procedures used with the investigated species comply fully with those standards. Author’s contribution: N.M.B. and I.I.G. collected parasites; ultrastuctural investigation performed by N.M.B., I.I.G., J.V.K.; the text writing – N.M.B., I.I.G., J.V.K. The authors declare that there are no conflicts of interest.

Supplementary material

ESM 1

(wmv 39.3 mb)

References

  1. Allison FR (1980) Sensory receptors of the rosette organ of Gyrocotyle rugosa. Int J Parasitol 10:5–6CrossRefGoogle Scholar
  2. Andersen KI (1975) Ultrastructural studies on Diphyllobothrium ditremum and D. dendriticum (Cestoda, Pseudophyllidea). Parasitol Res 46:253–264Google Scholar
  3. Andersen KI (1977) A marine Diphyllobothrium plerocercoid (Cestoda) from blue whiting (Micromestius poutasson). Parasitol Res 52:289–296Google Scholar
  4. Biserova NM (1987) Structure of integument in plerocercoids and mature Grillotia erinaceus (Cestoda, Trypanorhyncha). Parazitologia 21:26–34Google Scholar
  5. Biserova NM (1991a) Distribution of receptors and peculiarities of ultrathin structure of nervous system in representatives of three orders of lower cestoda. J General Biol 52:551–563Google Scholar
  6. Biserova NM (1991b) Ultrastructure of the scolex and the tegument of the strobile in Echinobothrium typus (Cestoda: Diphyllidea). In: Mamkaev Yu V (ed) Morphological principles of platyhelmints phylogenetics. Proceedings of the Zoological institute Academy of Sciences USSR. ZIN, St. Petersburg, 241:153–172Google Scholar
  7. Biserova NM (2008a) Ultrastructure of glial cells in the nervous system of Grillotia erinaceus. Cell Tissue Biol 2:253–264CrossRefGoogle Scholar
  8. Biserova NM (2008b) Do glial cells exist in the nervous system of parasitic and free-living flatworms? An ultrastructural and immunocytochemical investigation. Acta Biol Hung 60(30):208–219Google Scholar
  9. Biserova NM (2013) Methods for visualization of biological ultra structures. Preparation of biological objects for the electron microscopy and confocal laser scanning microscopy. A practical guide for biologists. KMK, MoscowGoogle Scholar
  10. Biserova NM, Gordeev II (2010) Fine structure of nervous system in plerocercoid Ligula intestinalis (Cestoda: Diphyllobothriidea). Invert Zool 7:133–154Google Scholar
  11. Biserova NM, Kemaeva AA (2012) The innervations of the frontal gland in scolex of the plerocercoid Diphyllobothrium ditremum (Cestoda: Diphyllobothriidea). In: Galkin AK, Dubinina EV, Poddubnaya LG (eds) The problems of cestodology, ELMOR, St. Petersburg, 4:13–33Google Scholar
  12. Biserova NM, Korneva ZV (1999) A sensory apparatus and formation of a nervous system of Triaenophorus nodulosus (Cestoda) in ontogenesis. Parazitologia 33:39–48Google Scholar
  13. Biserova NM, Korneva ZV (2012) Reconstruction of the cerebral ganglion fine structure in Parachristianella sp. (Cestoda, Trypanorhyncha). Zool Zhurnal 91:259–272Google Scholar
  14. Biserova NM, Gordeev II, Korneva JV, Salnikova MM (2010) Structure of the glial cells in the nervous system of parasitic and free-living flatworms. Biol Bull 37:277–287CrossRefGoogle Scholar
  15. Brunanska M, Gustafsson MKS, Fagerholm HP (1998) Ultrastructure of presumed sensory receptors in the scolex of adult Proteocephalus exiguus (Cestoda, Proteocephalidea). Int J Parasitol 28:667–677CrossRefPubMedGoogle Scholar
  16. Casado N, Moreno MJ, Urrea-Paris MA, Rodriguez-Caabeiro F (1999) Ultrastructural study of the papillae and presumed sensory receptors in the scolex of the Gymnorhynchus gigas plerocercoid (Cestoda: Trypanorhyncha). Parasitol Res 85:964–973CrossRefPubMedGoogle Scholar
  17. Chervy L (2009) Unified terminology for cestode microtriches: a proposal from the International Workshops on Cestode Systematics in 2002–2008. Folia Parasitol 56:199–230CrossRefPubMedGoogle Scholar
  18. Davydov VG, Biserova NM (1985) The morphology of two types of frontal glands of Grillotia erinaceus (Cestoda: Trypanorhyncha). Parazitologia 19:32–37Google Scholar
  19. Dudicheva VA, Biserova NM (2000a) Sensory organs of adult Amphilina foliacea (Amphilinida). Acta Biol Hung 51:433–437PubMedGoogle Scholar
  20. Dudicheva VA, Biserova NM (2000b) Distribution of sensory organs on the body surface of adult Amphilina foliacea (Plathelminthes, Amphilinida). Zoolog J 79:1139–1146Google Scholar
  21. Gabrion G, Euzet-Sicard S (1979) Etude du tegument et des receptours sensoriels du scolex d’un plerocercoide de Cestode Tetraphyllidea a‘l’aide de la microsropie electronique. Ann Parasit Hum Comp 54:573–583Google Scholar
  22. Hess E, Guggenheim R (1977) A study of the microtriches and sensory processes of the tetrathyridium of Mesocestoides corti Hoeopli, 1925, by transmission and scanning electron microscopy. Parasitol Res 53:189–199Google Scholar
  23. Jones MK (1990) Ciliated sensory receptors of the terminal genetalia of Cylindrotaenia hickmani (Cestoda, Nematotaeniidae). Bull Soc Fr Parasitol 8:192Google Scholar
  24. Jones MK (2000) Ultrastructure of the scolex, rhyncheal system and bothridial pits of Otobothrium mugilis (Cestoda: Trypanorhyncha). Folia Parasitol 47:29–38CrossRefPubMedGoogle Scholar
  25. Jones MK, Beveridge I (1998) Nybelinia queenslandensis sp. n. (Cestoda: Trypanorhyncha) parasitic in Carcharhinus melanopterus, from Australia, with observations on the fine structure of the scolex including the rhyncheal system. Folia Parasitol 45:295–311Google Scholar
  26. Korneva ZV, Davydov VG (2001) Ultrastructure of the male reproductive system of three proteocephalidean cestodes. Zoolog Z 80:921–928Google Scholar
  27. Korneva JV, Jones MK, Kuklin VV (2015) Fine structure of the copulatory apparatus of the tapeworm Tetrabothrius erostris (Cestoda: Tetrabothriidea). Parasitol Res 114:1829–1838. doi: 10.1007/s00436-015-4369-3
  28. Kuperman BI, Biserova NM (1983) The morpho-functional differentiation of the tegument of cestoda Acantobothrium dujardini (Tetraphyllidea). Parazitologia 17:382–390Google Scholar
  29. Morseth DJ (1967) Observations on the fine structure of the nervous of Echinococcus granulosus. J Parasitol 53:492–500CrossRefPubMedGoogle Scholar
  30. Okino T, Hatsushika R (1994) Ultrastructure studies on the papillae and the nonciliated sensory receptors of adult Spirometra erinacei (Cestoda, Pseudophyllidea). Parasitol Res 80:454–458CrossRefPubMedGoogle Scholar
  31. Palm HW (1995) Untersuchungen zur Systematik von Russelbandwurmern (Cestoda: Trypanorhyncha) aus Atlantischen Fischen. Ber Inst Meereskd Kiel 275:238–247Google Scholar
  32. Palm HW (1997) Trypanorhynch cestodes from commercial fishes from north-east Brazilian coastal waters. Mem Inst Oswaldo Cruz 92:69–79CrossRefGoogle Scholar
  33. Palm HW (2000) Trypanorhynch cestodes from Indonesian coastal waters (East Indian Ocean). Folia Parasitol 47:123–134CrossRefPubMedGoogle Scholar
  34. Palm HW (2004) The Trypanorhyncha Diesing, 1863. PKSPL-IPB Press, BogorGoogle Scholar
  35. Palm HW (2008) Surface ultrastructure of the elasmobranchia parasitizing Grillotiella exilis and Pseudonybelinia odontacantha (Trypanorhyncha, Cestoda). Zoomorphol 127:249–258CrossRefGoogle Scholar
  36. Palm HW, Poynton SL, Rutledge P (1998) Surface ultrastructure of plerocercoids of Bombycirhynchus sphyraenaicum (Pintner, 1930) (Cestoda: Trypanorhyncha). Parasitol Res 84:195–204CrossRefPubMedGoogle Scholar
  37. Palm HW, Mundt U, Overstreet R (2000) Sensory receptors and surface ultrastructure of trypanorhynch cestodes. Parasitol Res 86:821–833CrossRefPubMedGoogle Scholar
  38. Pluzhnikov LT, Krasnoschekov GP, Pospekhov VV (1986) Ultrastructure of the sensory endings of the cyclophyllidean. Parazitologia 20:441–447Google Scholar
  39. Poddubnaya LG (1998) Ultrastructure of the sensory endings in progenetic cestoda Diplocotyle olrikii (Cestoda: Cyathocephalata). Parazitologia 32:79–83Google Scholar
  40. Pospekhov VV, Krasnoshchekov GP (1992a) A new type of sensory endings in the suckers of cestodes. Parazitologia 26:168–170Google Scholar
  41. Pospekhov VV, Krasnoshchekov GP (1992b) The formation of sensitive endings in cestodes. Parazitologia 26:82–84Google Scholar
  42. Richards KS, Arme C (1982) Sensory receptors in the scolex-neck region of Caryophyllaeus laticeps (Caryophyllidea: Cestoda). J Parasitol 68:416–423CrossRefGoogle Scholar
  43. Webb RA, Davey KG (1974) Ciliated sensory receptors of the unactivated metacestode of Hymenolepis microstoma. Tissue Cell 6:587–598CrossRefPubMedGoogle Scholar
  44. Wikley BS (1972) A beginner’s handbook in biological electron microscopy. Chuchill Livingstone, EdinburgGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Natalia M. Biserova
    • 1
  • Ilya I. Gordeev
    • 2
  • Janetta V. Korneva
    • 3
    Email author
  1. 1.Biology FacultyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Laboratory of Arctic and AntarcticRussian Federal Research Institute of Fisheries and OceanographyMoscowRussia
  3. 3.Department of Ecological ParasitologyI.D. Papanin Institute for Biology of Inland Waters RASYaroslavlRussia

Personalised recommendations