Parasitology Research

, Volume 114, Issue 11, pp 4087–4097 | Cite as

Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi?

  • Kadarkarai Murugan
  • Christina Mary Samidoss
  • Chellasamy Panneerselvam
  • Akon Higuchi
  • Mathath Roni
  • Udaiyan Suresh
  • Balamurugan Chandramohan
  • Jayapal Subramaniam
  • Pari Madhiyazhagan
  • Devakumar Dinesh
  • Rajapandian Rajaganesh
  • Abdullah A. Alarfaj
  • Marcello Nicoletti
  • Suresh Kumar
  • Hui Wei
  • Angelo Canale
  • Heinz Mehlhorn
  • Giovanni BenelliEmail author
Original Paper


Malaria, the most widespread mosquito-borne disease, affects 350–500 million people each year. Eco-friendly control tools against malaria vectors are urgently needed. This research proposed a novel method of plant-mediated synthesis of silver nanoparticles (AgNP) using a cheap seaweed extract of Ulva lactuca, acting as a reducing and capping agent. AgNP were characterized by UV–vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The U. lactuca extract and the green-synthesized AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi. In mosquitocidal assays, LC50 values of U. lactuca extract against A. stephensi larvae and pupae were 18.365 ppm (I instar), 23.948 ppm (II), 29.701 ppm (III), 37.517 ppm (IV), and 43.012 ppm (pupae). LC50 values of AgNP against A. stephensi were 2.111 ppm (I), 3.090 ppm (II), 4.629 ppm (III), 5.261 ppm (IV), and 6.860 ppm (pupae). Smoke toxicity experiments conducted against mosquito adults showed that U. lactuca coils evoked mortality rates comparable to the permethrin-based positive control (66, 51, and 41 %, respectively). Furthermore, the antiplasmodial activity of U. lactuca extract and U. lactuca-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. Fifty percent inhibitory concentration (IC50) values of U. lactuca were 57.26 μg/ml (CQ-s) and 66.36 μg/ml (CQ-r); U. lactuca-synthesized AgNP IC50 values were 76.33 μg/ml (CQ-s) and 79.13 μg/ml (CQ-r). Overall, our results highlighted out that U. lactuca-synthesized AgNP may be employed to develop newer and safer agents for malaria control.


Culicidae Malaria Mosquito-borne diseases Nanotechnologies Smoke toxicity Ulva lactuca 



The authors are grateful to the Department of Science and Technology (New Delhi, India), Project No. DST/SB/EMEQ-335/2013. This work was also supported by the King Saud University, Deanship of Scientific Research, and College of Sciences Research Center. Funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

All applicable international and national guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflicts of interest

The authors declare that they have no competing interests. Heinz Mehlhorn and Giovanni Benelli are Editor in Chief and Editorial Board Member of Parasitology Research, respectively. This does not alter the authors’ adherence to all the Parasitology Research policies on sharing data and materials.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Aarthi N, Murugan K (2010) Larvicidal and smoke repellent activities of Spathodea campanulata P. Beauv. against the malarial vector Anopheles stephensi lis (Diptera: Culicidae). J Phytol 2:61–69Google Scholar
  2. Abbassy MA, Marzouk MA, Rabea EI, Abd-Elnabi AD (2014) Insecticidal and fungicidal activity of Ulva lactuca Linnaeus (Chlorophyta) extracts and their fractions. Ann Res Rev Biol 4:2252–2262CrossRefGoogle Scholar
  3. Abirami D, Murugan K (2011) HPTLC quantification of flavonoids, larvicidal and smoke repellent activities of Cassia occidentalis L. (Caesalpiniaceae) against malarial vectore Anopheles stephensi Lis (Diptera: Culicidae). J Phytol 3:60–72Google Scholar
  4. Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472CrossRefPubMedGoogle Scholar
  5. Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490CrossRefPubMedGoogle Scholar
  6. Amer A, Mehlhorn H (2006c) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477CrossRefPubMedGoogle Scholar
  7. Amer A, Mehlhorn H (2006d) The sensilla of Aedes and Anopheles mosquitoes and their importance in repellency. Parasitol Res 99:491–499CrossRefPubMedGoogle Scholar
  8. Amerasan D, Nataraj T, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Benelli G (2015) Mico-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci. doi: 10.1007/s10340-015-0675-x Google Scholar
  9. Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector-Born Zoon Dis 12:262–268CrossRefGoogle Scholar
  10. Azizullah A, Rehman ZU, Ali I, Murad W, Muhammad N, Ullah W, Hader D-P (2014) Chlorophyll derivatives can be an efficient weapon in the fight against dengue. Parasitol Res 113:4321–4326CrossRefPubMedGoogle Scholar
  11. Bagavan A, Rahuman AA, Kaushik NK, Sahal D (2011) In vitro antimalarial activity of medicinal plant extracts against Plasmodium falciparum. Parasitol Res 108:15–22CrossRefPubMedGoogle Scholar
  12. Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res. doi: 10.1007/s00436-015-4586-9 Google Scholar
  13. Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res. doi: 10.1007/s00436-015-4656-z
  14. Benelli G (2015c) Plant-synthesized nanoparticles in the fight against mosquito vectors: an eco-friendly tool against mosquito vectors? In: “Nanoparticles in the fight against parasites” (Ed. Heinz Mehlhorn), Parasitology Research Monographs, Springer, ISSN: 2192-3671, in pressGoogle Scholar
  15. Benelli G, Flamini G, Fiore G, Cioni PL, Conti B (2013a) Larvicidal and repellent activity of the essential oil of Coriandrum sativum L. (Apiaceae) fruits against the filariasis vector Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 112:1155–1161CrossRefPubMedGoogle Scholar
  16. Benelli G, Canale A, Conti B (2013b) Eco-friendly control strategies against the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae): repellency and toxic activity of plant essential oils and extracts. Pharmacologyonline 47:44–51Google Scholar
  17. Benelli G, Bedini S, Cosci F, Toniolo C, Conti B, Nicoletti M (2015a) Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res 114:227–36CrossRefPubMedGoogle Scholar
  18. Benelli G, Bedini S, Flamini G, Cosci F, Cioni PL, Amira S, Benchikh F, Laouer H, Di Giuseppe G, Conti B (2015b) Mediterranean essential oils as effective weapons against the West Nile vector Culex pipiens and the Echinostoma intermediate host Physella acuta: what happens around? An acute toxicity survey on non-target mayflies. Parasitol Res 114:1011–21CrossRefPubMedGoogle Scholar
  19. Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015c) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114(2):391–7CrossRefPubMedGoogle Scholar
  20. Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nanoparticles—a recent approach to insect pest control. Afr J Biotechnol 9:3489–3493Google Scholar
  21. Borchert H, Shevchenko EV, Robert A, Meki I, Kornowski A, Grubel G, Weller H (2005) Langmuir 21:1936CrossRefGoogle Scholar
  22. Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529CrossRefPubMedGoogle Scholar
  23. Elliot M, Janesn NF, Potter C (1978) The future of pyrethroids in insect control. Annu Rev Entomol 23:443–469CrossRefGoogle Scholar
  24. Finney DJ (1971) Probit Analysis. Cambridge University, London, pp 68–78Google Scholar
  25. Flodin C, Helidoniotis FFB (1999) Whitfield. Phytochmistry 51:135CrossRefGoogle Scholar
  26. Frederich M, Dogné JM, Angenot L, De Mol P (2002) New trends in anti-malarial agents. Curr Med Chem 9:1435–1456CrossRefPubMedGoogle Scholar
  27. Gessler MC, Nkunya MH, Mwasumbi LB, Heinrich M, Tanner M (1994) Screening Tanzanian medicinal plants for antimalarial activity. Acta Trop 56:65–77CrossRefPubMedGoogle Scholar
  28. Ivanova VR, Rouseva M, Kolarove Serkedjieva J, Manolova N (1994) Isolation of a polysaccharide with antiviral effect from Ulva lactuca. Prep Biochem Biotechnol 24:83–97Google Scholar
  29. Jensen M, Mehlhorn H (2009) Seventy-five years of Resochin® in the fight against malaria. Parasitol Res 105:609–627CrossRefPubMedGoogle Scholar
  30. Kalimuthu K, Lin SM, Tseng LC, Murugan K, Hwang J-S (2014) Bioefficacy potential of seaweed Gracilaria firma with copepod, Megacyclops formosanus for the control larvae of dengue vector Aedes aegypti. Hydrobiologia 741:113–123CrossRefGoogle Scholar
  31. Kamaraj C, Kaushik NK, Rahuman AA, Mohanakrishnan D, Bagavan A, Elango G, Zahir AA, Santhoshkumar T, Marimuthu S, Jayaseelan C, Kirthi AV, Rajakumar G, Velayutham K, Sahal D (2012) Antimalarial activities of medicinal plants traditionally used in the villages of Dharmapuri regions of South India. J Ethnopharmacol 141:796–802CrossRefPubMedGoogle Scholar
  32. Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 79:594–598CrossRefPubMedGoogle Scholar
  33. Khanavi M, Toulabi PB, Abai MR, Sadati N, Hadjiakhoondi F, Hadjiakhoondi A, Vatandoost H (2011) Larvicidal activity of marine algae, Sargassum swartzii and Chondria dasyphylla, against malaria vector Anopheles stephensi. J Vector Borne Dis 48:241–244PubMedGoogle Scholar
  34. Kovendan K, Murugan K, Vincent S, Barnard DR (2012) Studies on larvicidal and pupicidal activity of Leucas aspera Willd (Lamiaceae) and bacterial insecticide, Bacillus sphaericus against malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 110:195–203CrossRefPubMedGoogle Scholar
  35. Kumar KP, Murugan K, Kovendan K, Kumar AN, Hwang JS, Barnard DR (2012) Combined effect of seaweed (Sargassum wightii) and Bacillus thuringiensis var. israelensis on the coastal mosquito, Anopheles sundaicus, in Tamil Nadu, India. Sci Asia 38:141–146CrossRefGoogle Scholar
  36. Kumar P, Govindaraju M, Senthamilselvi S, Premkumar K (2013) Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca. Colloids Surf B Biointerfaces 103:658–661CrossRefPubMedGoogle Scholar
  37. Magudapatty P, Gangopadhyayrans P, Panigrahi BK, Nair KGM, Dhara S (2001) Electrical transport studies of Ag nanoparticles embedded in glass matrix. Physica B 299:142–146CrossRefGoogle Scholar
  38. Mehlhorn H (ed) (2011) Nature helps. How plants and other organisms contribute to solve health problems. Parasitol Res Monographs. Springer, Berlin, pp 1–372Google Scholar
  39. Mehlhorn H, Schmahl G, Schmidt J (2005) Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol Res 95:363–365CrossRefPubMedGoogle Scholar
  40. Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265CrossRefPubMedGoogle Scholar
  41. Mishra A, Kaushik NV, Sardar M, Sahal D (2013) Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloids Surf B Biointerfaces 111:713–718CrossRefPubMedGoogle Scholar
  42. Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Khatak J, Thyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus Trichoderma asperellum. Nanotechnology 19(7):075103CrossRefPubMedGoogle Scholar
  43. Murugan K, Murugan P, Noortheen A (2007) Larvicidal and repellent potential of Albizzia amara Boivin and Ocimum basilicum Linn against dengue vector, Aedes aegypti Insecta: Diptera: Culicidae). Bioresour Technol 98:198–20CrossRefPubMedGoogle Scholar
  44. Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Mahesh Kumar P, Subramaniam J, Suresh U (2015a) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114(6):2243–53CrossRefPubMedGoogle Scholar
  45. Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138CrossRefPubMedGoogle Scholar
  46. Murugan K, Priyanka V, Dinesh D, Madhiyazhagan P, Panneerselvam C, Subramaniam J, Suresh U, Chandramohan B, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Khater HF, Messing RH, Benelli G (2015c) Enhanced predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector Aedes aegypti in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol Res. doi: 10.1007/s00436-015-4582-0 Google Scholar
  47. Murugan K, Venus JSE, Panneerselvam C, Bedini S, Conti B, Nicoletti M, Kumar Sarkar S, Hwang JS, Subramaniam J, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Suresh U, Benelli G (2015d) Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus? Environ Sci Pollut Res. doi: 10.1007/s11356-015-4920-x Google Scholar
  48. Murugan K, Aarthi N, Kovendan K, Panneerselvam C, Chandramohan B, Mahesh Kumar P, Amerasan D, Paulpandi M, Chandirasekar R, Dinesh D, Suresh U, Subramaniam J, Higuchi A, Alarfaj AA, Nicoletti M, Mehlhorn H, Benelli G (2015e) Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and Plasmodium falciparum. Parasitol Res. doi: 10.1007/s00436-015-4593-x Google Scholar
  49. Ouattara LP, Sanon S, Mahiou-Leddet V, Gansané A, Baghdikian B, Traoré A, Nébié I, Traoré AS, Azas N, Ollivier E, Sirima SB (2014) In vitro antiplasmodial activity of some medicinal plants of Burkina Faso. Parasitol Res 113:405–416CrossRefPubMedGoogle Scholar
  50. Panneerselvam C, Murugan K (2013) Adulticidal, repellent, and ovicidal properties of indigenous plant extracts against the malarial vector, Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:679–692CrossRefPubMedGoogle Scholar
  51. Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar P, Subramaniam J (2013) Mosquito larvicidal and pupicidal activity of Euphorbia hirta Linn. (Family: Euphorbiaceae) and Bacillus sphaericus against Anopheles stephensi Liston. (Diptera: Culicidae). (Diptera: Culicidae). Asian Pac J Trop Med 6:102–109CrossRefPubMedGoogle Scholar
  52. Patil SV, Borase HP, Patil CD, Salunke BK (2012) Biosynthesis of silver nanoparticles using latex from few euphorbian plants and their antimicrobial potential. Appl Biochem Biotechnol 167:776–790CrossRefPubMedGoogle Scholar
  53. Rajakumar G, Rahuman AA, Chung IM, Vishnu Kirthi A, Marimuthu S, Anbarasan K (2015) Antiplasmodial activity of eco-friendly synthesized palladium nanoparticles using Eclipta prostrata extract against Plasmodium berghei in Swiss albino mice. Parasitol Res 114:1397–1406CrossRefPubMedGoogle Scholar
  54. Ravikumar S, Ramanathan G, Inbaneson SJ, Ramu A (2011) Antiplasmodial activity of two marine polyherbal preparations from Chaetomorpha antennina and Aegiceras corniculatum against Plasmodium falciparum. Parasitol Res 108:107–113CrossRefPubMedGoogle Scholar
  55. Roni M, Murugan K, Panneerselvam C, Subramaniam J, Hwang JS (2013) Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:981–990CrossRefPubMedGoogle Scholar
  56. Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Dinesh D, Suresh U, Khater HF, Wei H, Canale A, Alarfaj AA, Munusamy MA, Higuchi A, Benelli G (2015) Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf. doi: 10.1016/j.ecoenv.2015.07.005
  57. Rouxel C, Bonnabeze E, Daniel A, Jerome M, Etienne M, Fleurence J (2001) Identification by SDS PAGE of green seaweeds (Ulva and Enteromorpha) used in the food industry. J Appl Phycol 13:215–218CrossRefGoogle Scholar
  58. Santoso J, Yumiko Y, Takeshi S (2004) Antioxidant activity of methanol extracts from Indonesian seaweeds in an oil emulsion model. Fish Sci 70:183–188CrossRefGoogle Scholar
  59. Sathyavathi R, Balamurali Krishna M, Venugopal Rao S, Saritha R, Narayana Rao D (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 3:1–6CrossRefGoogle Scholar
  60. Semmler M, Abdel-Ghaffar F, Al-Rasheid KAS, Mehlhorn H (2009) Nature helps: from research to products against blood sucking arthropods. Parasitol Res 105:1483–1487CrossRefPubMedGoogle Scholar
  61. Shameli K, Ahmad MB, Yunus WMZW, Ibrahim NA (2010) Synthesis and characterization of silver/talc nanocomposites using the wet chemical reduction method. Int J Nanomedicine 5:743–751PubMedCentralCrossRefPubMedGoogle Scholar
  62. Sharbidre AA, Kasote DM (2013) Synthesis of silver nanoparticles using flaxseed hydroalcoholic extract and its antimicrobial activity. Curr Biotechnol 2:162–166CrossRefGoogle Scholar
  63. Sinha S, Pan I, Chanda P, Sen SK (2009) Nanoparticles fabrication using ambient biological resources. J Appl Biosci 19:1113–1130Google Scholar
  64. Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M (2004) Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother 48:1803–6PubMedCentralCrossRefPubMedGoogle Scholar
  65. Song JY, Janga HK, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem 44:1133–1138CrossRefGoogle Scholar
  66. Stuart BH (2002) Polymer Analysis. Wiley, United KingdomGoogle Scholar
  67. Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Nicoletti M, Higuchi A, Madhiyazhagan P, Subramaniam J, Dinesh D, Vadivalagan C, Chandramohan B, Alarfaj AA, Munusamy MA, Barnard DR, Benelli G (2015) Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res. doi: 10.1007/s00436-015-4556-2 PubMedGoogle Scholar
  68. Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562CrossRefPubMedGoogle Scholar
  69. Thangam TS, Kathiresan K (1991) Mosquito larvicidal effect of seaweed extracts. Bot Mar 34:433–435Google Scholar
  70. Trager W, Jensen J (1976) Human malaria parasites in continuous culture. Science 193:673–675CrossRefPubMedGoogle Scholar
  71. WHO (2005) Guidelines for laboratory and field-testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005.13.
  72. WHO (2014) Malaria. Fact sheet no. 94Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kadarkarai Murugan
    • 1
  • Christina Mary Samidoss
    • 1
  • Chellasamy Panneerselvam
    • 1
  • Akon Higuchi
    • 2
  • Mathath Roni
    • 1
  • Udaiyan Suresh
    • 1
  • Balamurugan Chandramohan
    • 1
  • Jayapal Subramaniam
    • 1
  • Pari Madhiyazhagan
    • 1
  • Devakumar Dinesh
    • 1
  • Rajapandian Rajaganesh
    • 1
  • Abdullah A. Alarfaj
    • 3
  • Marcello Nicoletti
    • 4
  • Suresh Kumar
    • 5
  • Hui Wei
    • 6
  • Angelo Canale
    • 7
  • Heinz Mehlhorn
    • 8
  • Giovanni Benelli
    • 7
    Email author
  1. 1.Division of Entomology, Department of Zoology, School of Life SciencesBharathiar UniversityCoimbatoreIndia
  2. 2.Department of ReproductionNational Research Institute for Child Health and DevelopmentTokyoJapan
  3. 3.Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Department of Environmental BiologySapienza University of RomeRomeItaly
  5. 5.Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health SciencesUniversity Putra MalaysiaSerdangMalaysia
  6. 6.Institute of Plant ProtectionFujian Academy of Agricultural SciencesFuzhouPeople’s Republic of China
  7. 7.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
  8. 8.Department of ParasitologyHeinrich Heine UniversityDüsseldorfGermany

Personalised recommendations