Advertisement

Parasitology Research

, Volume 114, Issue 10, pp 3627–3636 | Cite as

Host immune responses to experimental infection of Plasmodium relictum (lineage SGS1) in domestic canaries (Serinus canaria)

  • Vincenzo A. Ellis
  • Stéphane Cornet
  • Loren Merrill
  • Melanie R. Kunkel
  • Toshi Tsunekage
  • Robert E. Ricklefs
Original Paper

Abstract

Understanding the complexity of host immune responses to parasite infection requires controlled experiments that can inform observational field studies. Birds and their malaria parasites provide a useful model for understanding host-parasite relationships, but this model lacks a well-described experimental context for how hosts respond immunologically to infection. Here, ten canaries (Serinus canaria) were infected with the avian malaria parasite Plasmodium relictum (lineage SGS1) in a controlled laboratory setting with ten uninfected (control) birds. A suite of immunological blood parameters, including the concentration of four white blood cell types, the concentration of the acute phase protein haptoglobin, and the bacteria-killing ability of blood plasma, were repeatedly measured over a 25-day period covering the acute phase of a primary infection by P. relictum. Three infected and one control bird died during the course of the experiment. A multivariate statistical analysis of the immune indices revealed significant differences between infected and uninfected individuals between 5 and 14 days postinfection (dpi). Group differences corresponded to reduced concentrations of lymphocytes (5 dpi), heterophils (8 dpi), and monocytes (11 and 14 dpi), and an increase in haptoglobin (14 dpi), in infected birds relative to uninfected controls, and no change in bacteria-killing. Upon re-running the analysis with only the surviving birds, immunological differences between infected and control birds shifted to between 11 and 18 dpi. However, there were no clear correlates relating immune parameters to the likelihood of surviving the infection. The results presented here demonstrate the dynamic and complex nature of avian immune function during the acute phase of malaria infection and provide a context for studies investigating immune function in wild birds.

Keywords

Avian malaria Bacteria-killing Ecoimmunology Haptoglobin Leukocytes Haemosporida Plasmodium 

Notes

Acknowledgments

This work was supported in part by the NSF Malaria Research Coordination Network. The experiment was performed in the MIVEGEC lab in Montpellier, France. SC acknowledges support from a postdoctoral position funded by the ERC Starting Grant EVOLEPID 243054 to S. Gandon (CNRS, Montpellier). Thanks to J. Grindstaff (Oklahoma State University) for use of lab space for the BKA assay and to D. Fontenille (IRD, Montpellier) for supporting this project.

Ethical standards

The experiment was approved by the Ethical Committee for Animal Experimentation (CNRS) and the French Ministry of Education and Research (permit number CEEA-LR-1051).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

436_2015_4588_MOESM1_ESM.xls (50 kb)
ESM 1 (XLS 50 kb)

References

  1. Apanius V, Yorinks N, Bermingham E, Ricklefs RE (2000) Island and taxon effects in parasitism and resistance of lesser Antillean birds. Ecology 81:1959–1969CrossRefGoogle Scholar
  2. Atkinson JP, Glew RH, Neva FA, Frank MM (1975) Serum complement and immunity in experimental simian malaria. II. Preferential activation of early components and failure of depletion of late components to inhibit protective immunity. J Infect Dis 131:26–33CrossRefPubMedGoogle Scholar
  3. Atkinson CT, Dusek RJ, Lease JK (2001) Serological responses and immunity to superinfection with avian malaria in experimentally-infected Hawaii amakihi. J Wildl Dis 37:20–27CrossRefPubMedGoogle Scholar
  4. Babcook JS, Leslie KB, Olsen OA, Salmon RA, Schrader JW (1996) A novel strategy for generating monoclonal antibodies from single, isolated lymphocytes producing antibodies of defined specificities. Proc Natl Acad Sci 93:7843–7848CrossRefPubMedCentralPubMedGoogle Scholar
  5. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4
  6. Beadell JS, Ishtiaq F, Covas R, Melo M, Warren BH, Atkinson CT, Bensch S, Graves GR, Jhala YV, Peirce MA, Rahmani AR, Fonesca DM, Fleischer RC (2006) Global phylogeographic limits of Hawaii’s avian malaria. Proc R Soc B Biol Sci 273:2935–2944CrossRefGoogle Scholar
  7. Bichet C, Cornet S, Larcombe S, Sorci G (2012) Experimental inhibition of nitric oxide increases Plasmodium relictum (lineage SGS1) parasitaemia. Exp Parasitol 132:417–423CrossRefPubMedGoogle Scholar
  8. Bishop A, Tate P, Thorpe MV (1938) The duration of Plasmodium relictum infection in canaries. Parasitology 30:388–391CrossRefGoogle Scholar
  9. Boughton RK, Joop G, Armitage SAO (2011) Outdoor immunology: methodological considerations for ecologists: advancing ecological immunology methods. Funct Ecol 25:81–100CrossRefGoogle Scholar
  10. Breed DGJ, Dorrestein J, Schetters TPM, Waart LVD, Rijke E, Vermeulen AN (1997) Peripheral blood lymphocytes from Eimeria tenella infected chickens produce gamma-interferon after stimulation in vitro. Parasite Immunol 19:127–135CrossRefPubMedGoogle Scholar
  11. Buehler DM, Piersma T, Matson K, Tieleman BI (2008) Seasonal redistribution of immune function in a migrant shorebird: annual‐cycle effects override adjustments to thermal regime. Am Nat 172:783–796CrossRefPubMedGoogle Scholar
  12. Buehler DM, Versteegh MA, Matson KD, Tieleman BI (2011) One problem, many solutions: simple statistical approaches help unravel the complexity of the immunes system in an ecological context. PLoS ONE 6:e18592CrossRefPubMedCentralPubMedGoogle Scholar
  13. Cellier-Holzem E, Esparza-Salas R, Garnier S, Sorci G (2010) Effect of repeated exposure to Plasmodium relictum (lineage SGS1) on infection dynamics in domestic canaries. Int J Parasitol 40:1447–1453CrossRefPubMedGoogle Scholar
  14. Clark P, Boardman W, Raidal S (2009) Atlas of clinical avian hematology. Wiley-Blackwell, Oxford, UKGoogle Scholar
  15. R Core Team (2013) R: a language and environment for statistical computing. http://www.r-project.org/
  16. Cornet S, Sorci G (2014) Avian malaria models of disease. In: Hommel M, Kremsner PG (eds.) Encyclopedia of malaria. Springer Reference: Springer-Verlag Berlin HeidelbergGoogle Scholar
  17. Cornet S, Nicot A, Rivero A, Gandon S (2013) Malaria infection increases bird attractiveness to uninfected mosquitoes. Ecol Lett 16:323–329CrossRefPubMedGoogle Scholar
  18. Cornet S, Nicot A, Rivero A, Gandon S (2014) Evolution of plastic transmission strategies in avian malaria. PLoS Pathog 10:e1004308CrossRefPubMedCentralPubMedGoogle Scholar
  19. Demas GE, Nelson RJ (2012) Introduction to ecoimmunology. Ecoimmunology. Oxford University Press, New York, pp 3–6Google Scholar
  20. Ellis VA, Kunkel MR, Ricklefs RE (2014) The ecology of host immune responses to chronic avian haemosporidian infection. Oecologia 176:729–737CrossRefPubMedGoogle Scholar
  21. Esser AF (1994) The membrane attack complex of complement—assembly, structure and cytotoxic activity. Toxicology 87:229–247CrossRefPubMedGoogle Scholar
  22. Garvin MC, Homer BL, Greiner EC (2003) Pathogenicity of Haemoproteus danilewskyi, Kruse, 1890, in blue jays (Cyanocitta cristata). J Wildl Dis 39:161–169CrossRefPubMedGoogle Scholar
  23. Good MF, Xu H, Wykes M, Engwerda CR (2005) Development and regulation of cell-mediated immune responses to the blood stages of malaria: implications for vaccine research. Annu Rev Immunol 23:69–99CrossRefPubMedGoogle Scholar
  24. Graham AL, Lamb TJ, Read AF, Allen JE (2005) Malaria-filaria coinfection in mice makes malarial disease more severe unless filarial infection achieves patency. J Infect Dis 191:410–421CrossRefPubMedGoogle Scholar
  25. Griffiths R, Double MC, Orr K, Dawson RJ (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075CrossRefPubMedGoogle Scholar
  26. Halekoh U, Højsgaard S (2014) A Kenward-roger approximation and parametric bootstrap methods for tests in linear mixed models—the R package pbkrtest. J Stat Softw 59:1–30Google Scholar
  27. Harmon BG (1998) Avian heterophils in inflammation and disease resistance. Poult Sci 77:972–977CrossRefPubMedGoogle Scholar
  28. Hegemann A, Matson KD, Both C, Tieleman BI (2012) Immune function in a free-living bird varies over the annual cycle, but seasonal patterns differ between years. Oecologia 170:605–618CrossRefPubMedCentralPubMedGoogle Scholar
  29. Jacobs AC, Fair JM, Zuk M (2015) Parasite infection, but not immune response, influences paternity in western bluebirds. Behav Ecol Sociobiol 69:193–203CrossRefGoogle Scholar
  30. Kiesecker JM (2002) Synergism between trematode infection and pesticide exposure: a link to amphibian limb deformities in nature? Proc Natl Acad Sci 99:9900–9904CrossRefPubMedCentralPubMedGoogle Scholar
  31. Knowles SCL (2011) The effect of helminth co-infection on malaria in mice: a meta-analysis. Int J Parasitol 41:1041–1051CrossRefPubMedGoogle Scholar
  32. Kuznetsova A, Brockhoff PB, Christensen RHB (2014) lmerTest: tests in linear mixed effects models. R package version 2.0-20. http://CRAN.R-project.org/package=lmerTest
  33. Latimer KS, Tang K-N, Goodwin MA, Steffens WL, Brown J (1988) Leukocyte changes associated with acute inflammation in chickens. Avian Dis 32:760–772CrossRefPubMedGoogle Scholar
  34. Latta SC, Ricklefs RE (2010) Prevalence patterns of avian haemosporida on Hispaniola. J Avian Biol 41:25–33CrossRefGoogle Scholar
  35. Legendre P, Legendre L (1998) Numerical ecology, second English edition. Elsevier Science B.V., AmsterdamGoogle Scholar
  36. Matson KD, Cohen AA, Klasing KC, Ricklefs RE, Scheuerlein A (2006a) No simple answers for ecological immunology: relationships among immune indices at the individual level break down at the species level in waterfowl. Proc R Soc B Biol Sci 273:815–822CrossRefGoogle Scholar
  37. Matson KD, Tieleman BI, Klasing KC (2006b) Capture stress and the bactericidal competence of blood and plasma in five species of tropical birds. Physiol Biochem Zool 79:556–564CrossRefPubMedGoogle Scholar
  38. Millet S, Bennett J, Lee KA, Hau M, Klasing KC (2007) Quantifying and comparing constitutive immunity across avian species. Dev Comp Immunol 31:188–201CrossRefPubMedGoogle Scholar
  39. Morrison ES, Ardia DR, Clotfelter ED (2009) Cross-fostering reveals sources of variation in innate immunity and hematocrit in nestling tree swallows tachycineta bicolor. J Avian Biol 40:573–578CrossRefGoogle Scholar
  40. Oakley MS, Sahu BR, Lotspeich-Cole L, Solanki NR, Majam V, Pham PT, Banerjee R, Kozakai Y, Derrick SC, Kumar S, Morris SL (2013) The transcription factor T-bet regulates parasitemia and promotes pathogenesis during Plasmodium berghei ANKA murine malaria. J Immunol 191:4699–4708CrossRefPubMedGoogle Scholar
  41. Ochsenbein AF, Zinkernagel RM (2000) Natural antibodies and complement link innate and acquired immunity. Immunol Today 21:624–630CrossRefPubMedGoogle Scholar
  42. Ots I, Horak P (1998) Health impact of blood parasites in breeding great tits. Oecologia 116:441–448CrossRefGoogle Scholar
  43. Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S (2008) Plasmodium relictum (lineage P-SGS1): effects on experimentally infected passerine birds. Exp Parasitol 120:372–380CrossRefPubMedGoogle Scholar
  44. Quaye IK (2008) Haptoglobin, inflammation and disease. Trans R Soc Trop Med Hyg 102:735–742CrossRefPubMedGoogle Scholar
  45. Ramos TN, Darley MM, Weckbach S, Stahel PF, Tomlinson S, Barnum SR (2012) The C5 convertase is not required for activation of the terminal complement pathway in murine experimental cerebral malaria. J Biol Chem 287:24734–24738CrossRefPubMedCentralPubMedGoogle Scholar
  46. Ricklefs RE, Sheldon KS (2007) Malaria prevalence and white-blood-cell response to infection in a tropical and in a temperate thrush. Auk 124:1254–1266CrossRefGoogle Scholar
  47. Schofield L, Villaquiran J, Ferreira A, Schellekens H, Nussenzweig R, Nussenzweig V (1987) Interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature 330:664–666CrossRefPubMedGoogle Scholar
  48. Schulenburg H, Kurtz J, Moret Y, Siva-Jothy MT (2009) Introduction. Ecological immunology. Philos Trans R Soc Lond B Biol Sci 364:3–14CrossRefPubMedCentralPubMedGoogle Scholar
  49. Taylor-Robinson AW, Phillips RS, Severn A, Moncada S, Liew FY (1993) The role of TH1 and TH2 cells in a rodent malaria infection. Science 260:1931–1934CrossRefPubMedGoogle Scholar
  50. Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC Press, Boca Raton, FL, USAGoogle Scholar
  51. Waldenström J, Bensch S, Hasselquist D, Östman Ö (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90:191–194CrossRefPubMedGoogle Scholar
  52. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  53. Wood MJ, Childs DZ, Davies AS, Hellgren O, Cornwallis CK, Perrins CM, Sheldon BC (2013) The epidemiology underlying age-related avian malaria infection in a long-lived host: the mute swan Cygnus olor. J Avian Biol 44:347–358CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Vincenzo A. Ellis
    • 1
  • Stéphane Cornet
    • 2
    • 3
    • 4
  • Loren Merrill
    • 5
  • Melanie R. Kunkel
    • 1
  • Toshi Tsunekage
    • 1
  • Robert E. Ricklefs
    • 1
  1. 1.Department of BiologyUniversity of Missouri- St. LouisSt. LouisUSA
  2. 2.Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), UMR CNRS 5175MontpellierFrance
  3. 3.Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR CNRS 5290-IRD 224-UMMontpellierFrance
  4. 4.Centre de Biologie pour la Gestion des Populations (CBGP), UMR IRD 022Montferrier sur LezFrance
  5. 5.Illinois Natural History SurveyUniversity of IllinoisChampaignUSA

Personalised recommendations