Advertisement

Parasitology Research

, Volume 114, Issue 9, pp 3373–3383 | Cite as

Distribution and diversity of Nosema bombi (Microsporidia: Nosematidae) in the natural populations of bumblebees (Bombus spp.) from West Siberia

  • Valeriya VavilovaEmail author
  • Irina Sormacheva
  • Michal Woyciechowski
  • Natalia Eremeeva
  • Victor Fet
  • Aneta Strachecka
  • Sergey I. Bayborodin
  • Alexander Blinov
Original Paper

Abstract

Nosema bombi is an obligate intracellular parasite of bumblebees (Hymenoptera, Bombus spp.), which has significant negative effect on individual bumblebees, colony fitness, and development. Recently, several new genetic variants of N. bombi without a defined taxonomic status were identified in natural bumblebee populations from Russia, China, and several European countries, as well as N. ceranae, originally isolated from honey bees, was described in bumblebee species. Thus, it is required to investigate more Nosema variability in bumblebee populations for identifying new genetic Nosema variants. In our study, we used several methods such as total DNA isolation, polymerase chain reaction (PCR) amplification, cloning, sequencing, and comparative and phylogenetic analysis to investigate a prevalence of N. bombi and its diversity in the natural populations of bumblebees across West Siberia. DNA was extracted from intestinal bumblebee tissues. Identification of the parasite was conducted, using PCR with primers specific for the ribosomal RNA gene cluster and methionine aminopeptidase 2 gene of N. bombi followed by sequencing. Seven hundred twenty-seven individual bumblebees belonging to 16 species were tested; 64 specimens revealed presence of the parasite. Prevalence of Nosema bombi infection was different in each region and varied from 4 to 20 %. No infection was found in Bombus agrorum (n = 194) and Bombus equestris (n = 132), both common bumblebees in West Siberia. Three different genetic variants of the same species, N. bombi, were identified. The first variant belonged to N. bombi (AY008373) identified by Fies et al. (J Apicult Res 40:91–96, 2001), second (N. bombi WS2) was identical to the West Siberian variant identified by Szentgyörgyi et al. (Polish Journal of Ecology 59:599–610, 2011), and the last variant, N. bombi WS3, was new. The results led us to suggest that the prevalence of the N. bombi is related to the population structure of bumblebees and distribution of the particular genetic variants of N. bombi.

Keywords

Bumblebees Bombus Microsporidia Nosema Ribosomal gene cluster Genetic variant 

Notes

Acknowledgments

This study was supported by the Ministry of Education and Science of the Russian Federation (Agreement no. 8124 from 23.07.2012), the 6th EU Framework Programme ALARM GOCE-CT-2003-506675 Integrated Project, the 7th EU Framework Programme STEP—244090, and the Jagiellonian University grant DS/BiNoZ/INoS/761.

Supplementary material

436_2015_4562_MOESM1_ESM.pdf (134 kb)
Table S1 (PDF 134 kb)
436_2015_4562_MOESM2_ESM.pdf (794 kb)
Figure S1 (PDF 794 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. Bollan KA, Hothersall JD, Moffat C, Durkacz J, Saranzewa N, Wright GA, Raine NE, Highet F, Connolly CN (2013) The microsporidian parasites Nosema ceranae and Nosema apis are widespread in honeybee (Apis mellifera) colonies across Scotland. Parasitol Res 112:751–759CrossRefPubMedGoogle Scholar
  3. Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci U S A 108:662–667PubMedCentralCrossRefPubMedGoogle Scholar
  4. Cordes N, Huang WF, Strange JP, Cameron SA, Griswold TL, Lozier JD, Solter LF (2012) Interspecific geographic distribution and variation of the pathogens Nosema bombi and Crithidia species in United States bumble bee populations. J Invertebr Pathol 109:209–216CrossRefPubMedGoogle Scholar
  5. Fantham HB, Porter A (1914) The morphology, biology and economic importance of Nosema bombi, N. sp., parasitic in various humblebees (Bombus spp.). Ann Trop Med Parasit 8:623–638Google Scholar
  6. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791CrossRefGoogle Scholar
  7. Fries I (2010) Nosema ceranae in European honey bees (Apis mellifera). J Invertebr Pathol 103:S73–S79CrossRefPubMedGoogle Scholar
  8. Fries I, Feng A, da Silva AJ, Slemenda SB, Pieniazek NJ (1996) Nosema ceranae n. sp. (Microsporidia, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenopter, Apidae). Eur J Protistol 32:356–365CrossRefGoogle Scholar
  9. Fries I, de Ruijter A, Paxton RJ, da Silva AJ, Slemenda SB, Pieniazek NJ (2001) Molecular characterization of Nosema bombi (Microsporidia: Nosematidae) and a note on its sites of infection in Bombus terrestris (Hymenoptera: Apoidea). J Apicult Res 40:91–96Google Scholar
  10. Grixti JC, Wong LT, Cameron SA, Favret C (2009) Decline of bumble bees (Bombus) in the North American Midwest. Biol Conserv 142:75–84CrossRefGoogle Scholar
  11. Guindon S, Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  12. Klee J, Besana AM, Genersch E, Gisder S, Nanetti A, Tam DQ, Chinh TX, Puerta F, Ruz JM, Kryger P, Message D, Hatjina F, Korpela S, Fries I, Paxton RJ (2007) Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invertebr Pathol 96:1–10CrossRefPubMedGoogle Scholar
  13. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinform 23:2947–2948CrossRefGoogle Scholar
  14. Larsson JIR (2007) Cytological variation and pathogenicity of the bumble bee parasite Nosema bombi (Microspora, Nosematidae). J Invertebr Pathol 94:1–11CrossRefPubMedGoogle Scholar
  15. Li J, Wu J, Cai W, Peng W, An J, Huang J (2008) Comparison of the colony development of two native bumblebee species Bombus ignitus and Bombus lucorum as candidates for commercial pollination in China. J Apicult Res 47:22–26Google Scholar
  16. Li J, Chen W, Wu J, Peng W, An J, Schmid-Hempel P, Schmid-Hempel R (2012) Diversity of Nosema associated with bumblebees (Bombus spp.) from China. Int J Parasitol 42:49–61CrossRefPubMedGoogle Scholar
  17. Malone LA, McIvor CA (1996) Use of nucleotide sequence data to identify a microsporidian pathogen of Pieris rapae (Lepidoptera, Pieridae). J Invertebr Pathol 68:231–238CrossRefPubMedGoogle Scholar
  18. Martínez J, Leal G, Conget P (2012) Nosema ceranae an emergent pathogen of Apis mellifera in Chile. Parasitol Res 111:601–607CrossRefPubMedGoogle Scholar
  19. Martín-Hernández R, Botías C, Bailón EG, Martínez-Salvador A, Prieto L, Meana A, Higes M (2012) Microsporidia infecting Apis mellifera: coexistence or competition. Is Nosema ceranae replacing Nosema apis? Environ Microbiol 14:2127–2138CrossRefPubMedGoogle Scholar
  20. Medici SK, Sarlo EG, Porrini MP, Braunstein M, Eguaras MJ (2012) Genetic variation and widespread dispersal of Nosema ceranae in Apis mellifera apiaries from Argentina. Parasitol Res 110:859–864CrossRefPubMedGoogle Scholar
  21. Milbrath MO, van Tran T, Huang WF, Solter LF, Tarpy DR, Lawrence F, Huang ZY (2015) Comparative virulence and competition between Nosema apis and Nosema ceranae in honey bees (Apis mellifera). J Invertebr Pathol 125:9–15CrossRefPubMedGoogle Scholar
  22. O’Mahony EM, Tay WT, Paxton RJ (2007) Multiple rRNA variants in a single spore of the microsporidian Nosema bombi. J Eukaryot Microbiol 54:103–109CrossRefPubMedGoogle Scholar
  23. Okonechnikov K, Golosova O, Fursov M, Varlamov A, Vaskin Y, Efremov I et al (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinform 28:1166–1167CrossRefGoogle Scholar
  24. Otti O, Schmid-Hempel P (2007) Nosema bombi: a pollinator parasite with detrimental fitness effects. J Invertebr Pathol 96:118–124CrossRefPubMedGoogle Scholar
  25. Otti O, Schmid-Hempel P (2008) A field experiment on the effect of Nosema bombi in colonies of the bumblebee Bombus terrestris. Ecol Entomol 33:577–582CrossRefGoogle Scholar
  26. Paxton RJ, Klee J, Korpela S, Fries I (2007) Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie 38:558–565CrossRefGoogle Scholar
  27. Plischuk S, Martin-Hernández R, Prieto L, Lucia M, Botias C, Meana A, Abrahamovich AH, Lange C, Higes M (2009) South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honey bees (Apis mellifera). Env Microbiol Rep 1:131–135CrossRefGoogle Scholar
  28. Schmid-Hempel R, Eckhardt M, Goulson D, Heinzmann D, Lange C, Plischuk S, Escudero LR, Salathé R, Scriven JJ, Schmid-Hempel P (2013) The invasion of southern South America by imported bumblebees and associated parasites. J Anim Ecol 83:823–837CrossRefGoogle Scholar
  29. Szentgyörgyi H, Blinov A, Eremeeva N, Luzyanin S, Grześ IM, Woyciechowski M (2011) Bumblebees (Bombidae) along pollution gradient—heavy metal accumulation, species diversity, and Nosema bombi infection level. Pol J Ecol 59:599–610Google Scholar
  30. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedCentralCrossRefPubMedGoogle Scholar
  31. Tay WT, O’Mahony EM, Paxton RJ (2005) Complete rRNA gene sequences reveal that the microsporidium Nosema bombi infects diverse bumblebee (Bombus spp.) hosts and contains multiple polymorphic sites. J Eukaryot Microbiol 52:505–513CrossRefPubMedGoogle Scholar
  32. Teacher AG, Griffiths DJ (2010) HapStar: automated haplotype network layout and visualization. Mol Ecol Res 11:151–153CrossRefGoogle Scholar
  33. van der Steen JJM (2008) Infection and transmission of Nosema bombi in Bombus terrestris colonies and its effect on hibernation, mating and colony founding. Apidologie 39:273–282CrossRefGoogle Scholar
  34. Whittington R, Winston ML (2003) Effects of Nosema bombi and its treatment fumagillin on bumble bee (Bombus occidentalis) colonies. J Invertebr Pathol 84:54–58CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Valeriya Vavilova
    • 1
    Email author
  • Irina Sormacheva
    • 1
    • 2
  • Michal Woyciechowski
    • 3
  • Natalia Eremeeva
    • 4
  • Victor Fet
    • 5
  • Aneta Strachecka
    • 6
  • Sergey I. Bayborodin
    • 1
  • Alexander Blinov
    • 1
  1. 1.Institute of Cytology and Genetics SB RASNovosibirskRussian Federation
  2. 2.Novosibirsk State UniversityNovosibirskRussian Federation
  3. 3.Institute of Environmental SciencesJagiellonian UniversityKrakowPoland
  4. 4.Biological FacultyKemerovo State UniversityKemerovoRussian Federation
  5. 5.Department of Biological SciencesMarshall UniversityHuntingtonUSA
  6. 6.Department of Biological Basis of Animal Production, Faculty of Biology and Animal BreedingUniversity of Life SciencesLublinPoland

Personalised recommendations