Advertisement

Parasitology Research

, Volume 114, Issue 8, pp 3087–3096 | Cite as

Annona muricata leaf extract-mediated silver nanoparticles synthesis and its larvicidal potential against dengue, malaria and filariasis vector

  • S. B. Santhosh
  • R. Yuvarajan
  • D. NatarajanEmail author
Original Paper

Abstract

Mosquitoes transmit several diseases which cause millions of deaths every year. The use of synthetic insecticides to control mosquitoes caused diverse effects to the environment, mammals, and high manufacturing cost. The present study was aimed to test the larvicidal activity of green synthesized silver nanoparticles using Annona muricata plant leaf extract against third instar larvae of three medically important mosquitoes, i.e., Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. The different concentrations of green synthesized Ag Nanoparticles (AgNPs; 6, 12, 18, 24, 30 μg mL−1) and aqueous crude leaf extract (30, 60, 90, 120, 150 μg mL−1) were tested against the larvae for 24 h. Significant larval mortality was observed after the treatment of A. muricata for all mosquitoes with lowest LC50 and LC90 values, viz., A. aegypti (LC50 and LC90 values of 12.58 and 26.46 μg mL−1), A. stephensi (LC50 and LC90 values of 15.28 and 31.91 μg mL−1) and C. quinquefasciatus (LC50 and LC90 values of 18.77 and 35.72 μg mL−1), respectively. The synthesized AgNPs from A. muricata were highly toxic than aqueous crude extract. The nanoparticle characterization was done using spectral and microscopic analysis, namely UV-visible spectroscopy which showed a sharp peak at 420 nm of aqueous medium containing AgNPs, X-ray diffraction (XRD) analysis revealed the average crystalline size of synthesized AgNPs (approximately 45 nm), and Fourier transform infrared spectroscopy (FTIR) study exhibited prominent peaks 3381.28, 2921.03, 1640.17, 1384.58, 1075.83, and 610.77 cm−1. Particle size analysis (PSA) showed the size and distribution of AgNPs (103 nm); field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) analysis showed a spherical shape, size range from 20 to 53 nm; and energy-dispersive X-ray spectroscopy (EDX) reflects the chemical composition of synthesized AgNPs. Heat stability of the AgNPs was confirmed between the temperatures 20 to 70 °C. The result suggests that green synthesized AgNPs from A. muricata has the potential to be used as a low-cost and eco-friendly approach for the control of selected mosquitoes.

Keywords

Silver nanoparticles Annona muricata Larvicidal activity Anopheles stephensi Culex quinquefasciatus Aedes aegypti 

Notes

Acknowledgments

We thank the Department of Biotechnology, Periyar University, Salem, India for the laboratory facilities provided. Authors are thankful to the DST Unit of Nanoscience, IIT Madras for the TEM characterization. We extend our thanks to CIT, Coimbatore for the SEM analysis. The authors would also like to thank the Department of Physics, Periyar University for the XRD and FTIR characterization analysis.

References

  1. Abubacker MN, Deepalakshmi T (2013) In vitro antifungal potential of bioactive compound methyl ester of hexadecanoic acid isolated from Annona muricata linn (annonaceae) leaves. Biosci Biotechnol Res Asia 10(2):879–884CrossRefGoogle Scholar
  2. Abubacker MN, Deepalakshmi T, Sathya C (2014) Isolation and identification of biolarvicide from soursop (Annona muricata linn) aqueous leaf extract to mosquito (Aedes aegypti linn.) larvae. Biolife 2(2):579–585Google Scholar
  3. Betancur-Galvis L, Saez J, Granados H, Salazar A, Ossa J (1999) Antitumor and antiviral activity of Colombian medicinal plant extracts. Mem Inst Oswaldo Cruz 94:531–535PubMedCrossRefGoogle Scholar
  4. Breman JG, Martin AS, Mills A (2004) Conquering the intolerable burden of malaria: what’s new, what’s needed: a summary. Am J Trop Med Hyg 71(2):1–15PubMedGoogle Scholar
  5. Chitra G, Balasubramani G, Ramkumar R, Sowmiya R, Perumal P (2015) Mukia maderaspatana (Cucurbitaceae) extract-mediated synthesis of silver nanoparticles to control Culex quinquefasciatus and Aedes aegypti (Diptera:Culicidae). Parasitol Res. doi: 10.1007/s00436-015-4320-7 PubMedGoogle Scholar
  6. Elango G, Bagavan A, Kamaraj C, Zahir AA, Rahuman AA (2009) Oviposition-deterrent, ovicidal, and repellent activities of indigenous plant extracts against Anopheles subpictus Grassi (Diptera: Culicidae). Parasitol Res 105(6):1567–1576PubMedCrossRefGoogle Scholar
  7. Evanoff DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. Chem Phys 6:1221–1231Google Scholar
  8. Florence NT, Zibi Benoit M, Jonas K, Alexandra T, Paul Desire DD, Pierre K, Theophile D (2014) Antidiabetic and antioxidant effects of Annona muricata (Annonaceae), aqueous extract on streptozotocin-induced diabetic rats. J Ethnopharmacol 151:784–790PubMedCrossRefGoogle Scholar
  9. Gavamukulya Y, Abou Elella F, Wamunyokoli F (2014) Aei Shemy H (2014) Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola). Asian Pac J Trop Med 7(suppl 1):S355–S363CrossRefGoogle Scholar
  10. Gayathri V, Balakrishna Murthy P (2006) Reduced susceptibility to deltamethrin and kdr mutation in Anopheles stephensi Liston, a malaria vector in India. J Am Mosq Cont Assoc 22:678–688CrossRefGoogle Scholar
  11. Haldar KM, Haldar B, Chandra G (2013) Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall.). Parasitol Res 112:1451–1459PubMedCrossRefGoogle Scholar
  12. Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G (2009) Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res 104(5):1163–1171PubMedCrossRefGoogle Scholar
  13. Kim KJ, SungWS SBK, Moon SK, Choi JS, Kim JG, Lee DG (2009) Antifungal activity and mode of action of silver nanoparticles on Candida albicans. Biometals 22(2):235–242PubMedCrossRefGoogle Scholar
  14. Komalamisra N, Trongtokit Y (2005) Rongsriyam Y and Apiwathnasorn C (2005) Screening for larvicidal activity in some Thai plants against four mosquito vector species. Southeast Asian J Trop Med Pub Health 36(6):1412–1422Google Scholar
  15. Kovendan K, Murugan K, Vincent S, Barnard DR (2012) Mosquito larvicidal properties of Orthosiphon thymiflorus (Roth) Sleesen. (Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Asian Pac J Trop Med 5(4):299–305PubMedCrossRefGoogle Scholar
  16. Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B: Biointerfaces 76:50–56PubMedCrossRefGoogle Scholar
  17. Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 10:2212–2224Google Scholar
  18. Murugan K, Mahesh Kumar P, Kovendan K, Amerasan D, Subramaniam J (2012) Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 111(4):1757–1769PubMedCrossRefGoogle Scholar
  19. Naresh Kumar A, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2011) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vect Born Zoon Dis 12(3):262–268Google Scholar
  20. Padma P, Pramod NP, Thyagarajan SP, Khosa RL (1998) Effect of the extract of Annona muricata and Petunia nyctaginiflora on herpes simplex virus. J Ethnopharmacol 61:81–83PubMedCrossRefGoogle Scholar
  21. Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK (2012) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata. Parasitol Res 111:555–562PubMedCrossRefGoogle Scholar
  22. Ragasa CY, Torres OB, Soriano G (2013) Sterols and triterpenes from the fruit of Annona muricata Linn. Silliman journal Vol. 54 NO. 1Google Scholar
  23. Rajesh W, Niranjan S, Jaya R, Vijay D, Sahebrao B, Kashid (2010) Extracellular synthesis of silver nanoparticles using dried leaves of Pongamia pinnata (L) pierre. Nano-Micro Lett 2:2106–2113Google Scholar
  24. Rajkumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vector. Acta Trop 118(3):196–203CrossRefGoogle Scholar
  25. Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM (2008) A preliminary assessment of silver nanoparticle inhibition of monkey pox virus plaque formation. Nanoscale Res Lett 3:129–133PubMedCentralCrossRefGoogle Scholar
  26. Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2010) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res. doi: 10.1007/s00436-010-2115-4 Google Scholar
  27. Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in reaction to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 112:487–499PubMedCrossRefGoogle Scholar
  28. Suganya A, Murugan K, Kovendan K, Mahesh Kumar P, Hwang JS (2013) Green synthesis of silver nanoparticles using Murraya Koenigii leaf extract against Anopheles stephensi and Aedes aegypti. Parasitol Res 112:1385–1397PubMedCrossRefGoogle Scholar
  29. Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer protected cluster molecules. Acc Chem Res 33:27PubMedCrossRefGoogle Scholar
  30. Veerakumar K, Govindan M, Rajeswary M (2013) Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 112:4073–4085PubMedCrossRefGoogle Scholar
  31. Veerakumar K, Govindarajan M, Rajeswary M (2014) Low-cost and ecofriendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:1775–1785PubMedCrossRefGoogle Scholar
  32. Venkatesan B, Subramanian V, Tumala A, Vellaichamy E (2014) Rapid synthesis of biocompatible silver nanoparticles using aqueous extract of Rosa damascene petals and evaluation of their anticancer activity. Asian Pac J Trop Med 7:S294–S300CrossRefGoogle Scholar
  33. Vivek M, Senthil Kumar P, Steffi S, Sudha S (2011) Biogenic silvernanoparticles by Gelidiella acerosa extract and their antifungaleffects. Avicemma J Med Biotechnol 3(3):143–148Google Scholar
  34. Vivekanandhan S, Misra M, Mohanty AK (2009) Biological synthesis of silver nanoparticles using Glycine max (soybean) leaf extract: an investigation on different soybean varieties. J Nanosci Nanotechnol 9(12):6828–6833PubMedCrossRefGoogle Scholar
  35. WHO (1996) Report of the WHO informal consultation on the evaluation on the testing of insecticides. CTD/WHO PES/IC/96.1. WHO, Geneva, p 69Google Scholar
  36. WHO (2010) Dengue transmission research in WHO bulletin. WHO, GenevaGoogle Scholar
  37. WHO (2012) Handbook for integrated vector management. World Health Organization, GenevaGoogle Scholar
  38. WHO (2013) Lymphatic filariasis. http://www.who.int/mediacentre/factsheets/fs102/en/
  39. Zahir AA, Rahuman AA, Kamaraj C, Bagavan A, Elango G, Sangaran A, Kumar BS (2009) Laboratory determination of efficacy of indigenous plant extracts for parasites control. Parasitol Res 105(2):453–461PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Natural Drug Research Laboratory, Department of Biotechnology, School of BiosciencesPeriyar UniversitySalemIndia

Personalised recommendations