Advertisement

Parasitology Research

, Volume 114, Issue 7, pp 2671–2678 | Cite as

The life cycle of Ortholinea auratae (Myxozoa: Ortholineidae) involves an actinospore of the triactinomyxon morphotype infecting a marine oligochaete

  • Luis F. Rangel
  • Sónia Rocha
  • Ricardo Castro
  • Ricardo Severino
  • Graça Casal
  • Carlos Azevedo
  • Francisca Cavaleiro
  • Maria J. Santos
Original Paper

Abstract

Actinospores released from the marine oligochaete Limnodriloides agnes inhabiting a Southern Portuguese fish farm are molecularly recognized as developmental stages of the life cycle of Ortholinea auratae, a myxosporean parasite that infects the urinary bladder of Sparus aurata. The molecular analysis of the 18S rRNA gene reveals a similarity of 99.9 to 100 % of the actinospores analyzed to the myxospores of O. auratae. The actinospores belong to the triactinomyxon morphotype and occur in groups of eight within pansporocysts that develop in the intestinal epithelium of the oligochaete host. This is the first record of a myxosporean using an oligochaete as its invertebrate host in the marine environment.

Keywords

Myxozoa Ortholinea auratae Sparus aurata Limnodriloides agnes Life cycle Triactinomyxon Oligochaeta 

Notes

Acknowledgments

This research was partially supported by the European Regional Development Fund (ERDF) through the COMPETE - Operational Competitiveness Programme and national funds through FCT—Foundation for Science and Technology, under the project “PEst-C/MAR/LA0015/2013” the project DIRDAMyx, reference FCOMP-01-0124-FEDER-020726/FCT-PTDC/MAR/116838/2010, and the Ph.D. fellowship grant SFRH/BD/82237/2011 attributed to L. Rangel and the Ph.D. fellowship grant SFRH/BD/92661/2013 attributed to S. Rocha through the programme POPH/FSE QREN; and the project EUCVOA (NORTE-07-0162-FEDER-000116) (Portugal). This work complies with the current laws of the country where it was performed.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. Abdel-Ghaffar F, El-Toukhy A, Al-Quraishy S, Al-Rasheid K, Abdel-Baki A, Hegazy A, Bashtar A-R (2008) Five new myxosporean species (Myxozoa: Myxosporea) infecting the Nile tilapia Oreochromis niloticus in Bahr Shebin, Nile Tributary, Nile Delta, Egypt. Parasitol Res 103:1197–1205. doi: 10.1007/s00436-008-1116-z PubMedCrossRefGoogle Scholar
  2. Ali MA (2000) Ortholinea basma n. sp. (Myxozoa: Myxosporea) from agile klipfish Clinus agilis (Teleostei: Clinidae), light and scanning electron microscopy. Eur J Protistol 36:100–102. doi: 10.1016/S0932-4739(00)80026-7 CrossRefGoogle Scholar
  3. Atkinson SD, Bartholomew JL (2009) Alternate spore stages of Myxobilatus gasterostei, a myxosporean parasite of three-spined sticklebacks (Gasterosteus aculeatus) and oligochaetes (Nais communis). Parasitol Res 104:1173–1181. doi: 10.1007/s00436-008-1308-6 PubMedCrossRefGoogle Scholar
  4. Azevedo C, Casal G, Garcia P, Matos P, Teles-Grilo L, Matos E (2009) Ultrastructural and phylogenetic data of Chloromyxum riorajum sp. nov. (Myxozoa), a parasite of the stingray Rioraja agassizii in Southern Brazil. Dis Aquat Org 85:41–51. doi: 10.3354/dao02067 PubMedCrossRefGoogle Scholar
  5. Bartholomew JL, Whipps MJ, Stevens DG, Fryer JL (1997) The life cycle of Ceratomyxa shasta, a myxosporean parasite of salmonids, requires a freshwater polychaete as an alternate host. J Parasitol 83:859–868. doi: 10.2307/3284281 PubMedCrossRefGoogle Scholar
  6. Bartholomew JL, Atkinson SD, Hallett SL (2006) Involvement of Manayunkia speciosa (Annelida: Polychaeta: Sabellidae) in the life cycle of Parvicapsula minibicornis, a myxozoan parasite of pacific salmon. J Parasitol 92:742–748. doi: 10.1645/GE-781R.1 PubMedCrossRefGoogle Scholar
  7. Caffara M, Raimondi E, Florio D, Marcer F, Quaglio F, Fioravanti ML (2009) The life cycle of Myxobolus lentisuturalis (Myxozoa: Myxobolidae), from goldfish (Carassius auratus auratus), involves a Raabeia-type actinospore. Folia Parasitol 56:6–12. doi: 10.14411/fp.2009.002 PubMedCrossRefGoogle Scholar
  8. Caullery M, Mesnil F (1904) Sur un nouveau (Sphaeractinomyxon stolci n.g. n.sp.) d’Actinomyxidies et son développement. C R Soc Biol (Paris) 56:408–410Google Scholar
  9. de Puytorac P (1963) L’ultrastructure des cnidocystes de l’Actinomyxidie: Sphaeractinomyxon amanieui sp. nov. C. R. Acad Sci (Paris) 256:1594–1596Google Scholar
  10. Erséus C (1992) Groundwater and marine intertidal Tubificidae (Oligochaeta) from the Canary and Cabo Verde Islands, with descriptions of two new species. Contrib Zool 62:63–70Google Scholar
  11. Eszterbauer E, Marton S, Rácz OZ, Letenyei M, Molnár K (2006) Morphological and genetic differences among actinosporean stages of fish-parasitic myxosporeans (Myxozoa): difficulties of species identification. Syst Parasitol 65:97–114. doi: 10.1007/s11230-006-9041-y PubMedCrossRefGoogle Scholar
  12. Fiala I (2006) The phylogeny of Myxosporea (Myxozoa) based on small subunit ribosomal RNA gene analysis. Int J Parasitol 36:1521–1534. doi: 10.1016/j.ijpara.2006.06.016 PubMedCrossRefGoogle Scholar
  13. Gilbert MA, Granath WO (2001) Persistent infection of Myxobolus cerebralis, the causative agent of salmonid whirling disease, in Tubifex tubifex. J Parasitol 87:101–107. doi: 10.1645/0022-3395(2001)087[0101:PIOMCT]2.0.CO;2 PubMedCrossRefGoogle Scholar
  14. Gilbert MA, Granath WO (2003) Whirling disease of salmonid fish: life cycle, biology, and disease. J Parasitol 89:658–667. doi: 10.1645/GE-82R PubMedCrossRefGoogle Scholar
  15. Hallett SL, Diamant A (2001) Ultrastructure and small-subunit ribosomal DNA sequence of Henneguya lesteri n.sp. (Myxosporea), a parasite of sand whiting Sillago analis (Sillaginidae) from the coast of Queensland, Australia. Dis Aquat Org 46:197–212. doi: 10.3354/dao046197 PubMedCrossRefGoogle Scholar
  16. Hallett SL, Lester RJG (1999) Actinosporeans (Myxozoa) with four developing spores within a pansporocyst: Tetraspora discoidea n.g. n.sp. and Tetraspora rotundum n.sp. Int J Parasitol 29:419–427. doi: 10.1016/S0020-7519(98)00228-8 PubMedCrossRefGoogle Scholar
  17. Hallett SL, Erséus C, Lester RJG (1997) Actinosporea from Hong Kong marine Oligochaeta. In: Morton B (ed) The marine flora and fauna of Hong Kong and Southern China IV, Proceedings of the Eighth International Marine Biological Workshop: The Marine Flora and Fauna of Hong Kong and Southern China, Hong Kong 1995. Hong Kong University Press, Hong Kong, pp 1–7Google Scholar
  18. Hallett SL, O’Donoghue PJ, Lester RJG (1998) Structure and development of a marine actinosporean, Sphaeractinomyxon ersei n. sp. (Myxozoa). J Eukaryot Microbiol 45:142–150. doi: 10.1111/j.1550-7408.1998.tb05082.x CrossRefGoogle Scholar
  19. Hallett SL, Erséus C, Lester RJG (1999) Actinosporeans (Myxozoa) from marine oligochaetes of the Great Barrier Reef. Syst Parasitol 44:49–57. doi: 10.1023/A:1006105503243 PubMedCrossRefGoogle Scholar
  20. Hallett SL, Erséus C, O’Donoghue PJ, Lester RJG (2001) Parasite fauna of Australian marine oligochaetes. Memoirs Queensland Museum 46:555–576Google Scholar
  21. Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–453PubMedCrossRefGoogle Scholar
  22. Holzer AS, Sommerville C, Wootten R (2004) Molecular relationships and phylogeny in a community of myxosporeans and actinosporeans based on their 18S rDNA sequences. Int J Parasitol 34:1099–1111. doi: 10.1016/j.ijpara.2004.06.002 PubMedCrossRefGoogle Scholar
  23. Kallert DM, Eszterbauer E, El-Matbouli M et al (2005) The life cycle of Henneguya nuesslini Schuberg & Schröder, 1905 (Myxozoa) involves a triactinomyxon-type actinospore. J Fish Dis 28:71–79. doi: 10.1111/j.1365-2761.2004.00599.x PubMedCrossRefGoogle Scholar
  24. Karlsbakk E, Køie M (2011) Morphology and SSU rDNA sequences of Ortholinea orientalis (Shul’man and Shul’man-Albova, 1953) (Myxozoa, Ortholineidae) from Clupea harengus and Sprattus sprattus (Clupeidae) from Denmark. Parasitol Res 109:139–145. doi: 10.1007/s00436-010-2237-8 PubMedCrossRefGoogle Scholar
  25. Karlsbakk E, Køie M (2012) The marine myxosporean Sigmomyxa sphaerica (Thélohan, 1895) gen. n., comb. n. (syn. Myxidium sphaericum) from garfish (Belone belone (L.)) uses the polychaete Nereis pelagica L. as invertebrate host. Parasitol Res 110:211–218. doi: 10.1007/s00436-011-2471-8 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Køie M, Whipps M, Kent ML (2004) Ellipsomyxa gobii (Myxozoa: Ceratomyxidae) in the common goby Pomatoschistus microps (Teleostei: Gobiidae) uses Nereis spp. (Annelida: Polychaeta) as invertebrate hosts. Folia Parasitol 51:14–18PubMedCrossRefGoogle Scholar
  27. Køie M, Karlsbakk E, Nylund A (2007) A new genus Gadimyxa with three new species (Myxozoa, Parvicapsulidae) parasitic in marine fish (Gadidae) and the two-host life cycle of Gadimyxa atlantica n. sp. J Parasitol 93:1459–1467. doi: 10.1645/GE-1256.1 PubMedCrossRefGoogle Scholar
  28. Køie M, Karlsbakk E, Nylund A (2008) The marine herring myxozoan Ceratomyxa auerbachi (Myxozoa: Ceratomyxidae) uses Chone infundibuliformis (Annelida: Polychaeta: Sabellidae) as invertebrate host. Folia Parasitol 55:100–104PubMedCrossRefGoogle Scholar
  29. Køie M, Karlsbakk E, Einen A-CB, Nylund A (2013) A parvicapsulid (Myxozoa) infecting Sprattus sprattus and Clupea harengus (Clupeidae) in the Northeast Atlantic uses Hydroides norvegicus (Serpulidae) as invertebrate host. Folia Parasitol 60:149–154. doi: 10.14411/fp.2013.016 PubMedCrossRefGoogle Scholar
  30. Lom J, Dyková I (1992) Fine structure of Triactinomyxon early stages and sporogony: myxosporean and actinosporean features compared. J Protozool 39:16–27. doi: 10.1111/j.1550-7408.1992.tb01279.x CrossRefGoogle Scholar
  31. Lom J, Dyková I (2006) Myxozoan genera: definition and notes on taxonomy, life-cycle terminology and pathogenic species. Folia Parasitol 53:1–36PubMedCrossRefGoogle Scholar
  32. Lom J, McGeorge J, Feist SW et al (1997) Guidelines for the uniform characterisation of the actinosporean stages of parasites of the phylum Myxozoa. Dis Aquat Org 30:1–9. doi: 10.3354/dao030001 CrossRefGoogle Scholar
  33. Marton S, Eszterbauer E (2011) The development of Myxobolus pavlovskii (Myxozoa: Myxobolidae) includes an echinactinomyxon-type actinospore. Folia Parasitol 56:157–163CrossRefGoogle Scholar
  34. Molnár K, Marton S, Székely C, Eszterbauer E (2010) Differentiation of Myxobolus spp. (Myxozoa: Myxobolidae) infecting roach (Rutilus rutilus) in Hungary. Parasitol Res 107:1137–1150. doi: 10.1007/s00436-010-1982-z [Ligação ao artigo ?]PubMedCrossRefGoogle Scholar
  35. Morris DJ (2012) A new model for myxosporean (Myxozoa) development explains the endogenous budding phenomenon, the nature of cell within cell life stages and evolution of parasitism from a cnidarian ancestor. Int J Parasitol 42:829–840. doi: 10.1016/j.ijpara.2012.06.001 PubMedCrossRefGoogle Scholar
  36. Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowski G (2002) The Simple Fools Guide to PCR, Version 2.0. University of Hawaii, Honolulu. http://palumbi.stanford.edu/SimpleFoolsMaster.pdf. Accessed 12 January 2015
  37. Pita C, Gamito S, Erzini K (2002) Feeding habits of the gilthead seabream (Sparus aurata) from the Ria Formosa (southern Portugal) as compared to the black seabream (Spondyliosoma cantharus) and the annular seabream (Diplodus annularis). J Appl Ichthyol 18:81–86. doi: 10.1046/j.1439-0426.2002.00336.x CrossRefGoogle Scholar
  38. Rangel LF, Santos MJ, Cech G, Székely C (2009) Morphology, molecular data, and development of Zschokkella mugilis (Myxosporea, Bivalvulida) in a polychaete alternate host, Nereis diversicolor. J Parasitol 95:561–569. doi: 10.1645/GE-1777.1 PubMedCrossRefGoogle Scholar
  39. Rangel LF, Rocha S, Borkhanuddin MH et al (2014) Ortholinea auratae n. sp. (Myxozoa, Ortholineidae) infecting the urinary bladder of the gilthead seabream Sparus aurata (Teleostei, Sparidae), in a Portuguese fish farm. Parasitol Res 113:3427–3437. doi: 10.1007/s00436-014-4008-4 PubMedCrossRefGoogle Scholar
  40. Rocha S, Casal G, Rangel L, Castro R, Severino R, Azevedo C, Santos MJ (2015) Ultrastructure and phylogeny of Ceratomyxa auratae n. sp. (Myxosporea: Ceratomyxidae), a parasite infecting the gilthead seabream Sparus aurata (Teleostei: Sparidae). Parasitol Int (in Press)Google Scholar
  41. Rosecchi E (1987) La álimentation de Diplodus annularis, Diplodus sargus, Diplodus vulgaris et Sparus aurata (Pisces, Sparidae) dans le Golfe du Lion et les lagunes littorales. Rev Trav Inst Peches Marit 49:125–141Google Scholar
  42. Roubal FR, Hallett SL, Lester RJG (1997) First record of triactinomyxon actinosporean in marine oligochaete. Bull Eur Ass Fish Pathol 17:83–85Google Scholar
  43. Sarkar NK (1999) Ortholinea gadusiae sp. n. and Sphaeromyxa opisthopterae sp. n. (Myxozoa: Myxosporea) from the clupeid cish of the Bay of Bengal, West Bengal, India. Acta Protozool 38:145–153Google Scholar
  44. Shirakashi S, El-Matbouli M (2009) Myxobolus cerebralis (Myxozoa), the causative agent of whirling disease, reduces fecundity and feeding activity of Tubifex tubifex (Oligochaeta). Parasitology 136:603–613. doi: 10.1017/S0031182009005721 PubMedCrossRefGoogle Scholar
  45. Stevens R, Kerans BL, Lemmon JC, Rasmussen C (2001) The effects of Myxobolus cerebralis myxospore dose on triactinomyxon production and biology of Tubifex tubifex from two geographic regions. J Parasitol 87:315–321. doi: 10.1645/0022-3395(2001)087[0315:TEOMCM]2.0.CO;2 PubMedCrossRefGoogle Scholar
  46. Székely C, Hallett SL, Atkinson SD, Molnár K (2009) Complete life cycle of Myxobolus rotundus (Myxosporea: Myxobolidae), a gill myxozoan of common bream Abramis brama. Dis Aquat Org 85:147–155. doi: 10.3354/dao02068 PubMedCrossRefGoogle Scholar
  47. Székely C, Borkhanuddin MH, Cech G, Kelemen O, Molnár K (2014) Life cycles of three Myxobolus spp. from cyprinid fishes of Lake Balaton, Hungary involve triactinomyxon-type actinospores. Parasitol Res 113:2817–2825. doi: 10.1007/s00436-014-3942-5 PubMedCrossRefGoogle Scholar
  48. Whipps CM, Adlard RD, Bryant MS et al (2003) First report of three Kudoa species from Eastern Australia: Kudoa thyrsites from Mahi mahi (Coryphaena hippurus), Kudoa amamiensis and Kudoa minithyrsites n. sp. from sweeper (Pempheris ypsilychnus). J Eukaryot Microbiol 50:215–219. doi: 10.1111/j.1550-7408.2003.tb00120.x PubMedCrossRefGoogle Scholar
  49. Wolf K, Markiw ME (1984) Biology contravenes taxonomy in the Myxozoa: new discoveries show alternation of invertebrate and vertebrate hosts. Science 225:1449–1452. doi: 10.1126/science.225.4669.1449 PubMedCrossRefGoogle Scholar
  50. Yokoyama H, Grabner D, Shirakashi S (2012) Transmission Biology of the Myxozoa, Health and Environment in Aquaculture. Dr. Edmir Carvalho (Ed.), ISBN: 978-953-51-0497-1, In Tech. http://www.intechopen.com/books/health-and-environment-in-aquaculture/transmission-biology-of-the-myxozoa. Accessed 12 January 2015

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Luis F. Rangel
    • 1
    • 2
  • Sónia Rocha
    • 2
    • 3
  • Ricardo Castro
    • 1
    • 2
  • Ricardo Severino
    • 2
  • Graça Casal
    • 2
    • 4
  • Carlos Azevedo
    • 2
    • 3
    • 5
  • Francisca Cavaleiro
    • 2
  • Maria J. Santos
    • 1
    • 2
  1. 1.Department of Biology, Faculty of SciencesUniversity of PortoPortoPortugal
  2. 2.Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoPortoPortugal
  3. 3.Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS)University of PortoPortoPortugal
  4. 4.Department of SciencesHigh Institute of Health Sciences-North, CESPUGandraPortugal
  5. 5.Zoology Department, College of SciencesKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations