Advertisement

Parasitology Research

, Volume 114, Issue 6, pp 2333–2339 | Cite as

Malaria DNA vaccine gp96NTD-CSP elicits both CSP-specific antibody and CD8+ T cell response

  • Zhangping Tan
  • TaoLi Zhou
  • Hong Zheng
  • Yan Ding
  • Wenyue XuEmail author
Original Paper

Abstract

It is ideal for the pre-erythrocytic stage subunit vaccine to induce both CSP-specific antibody and CD8+ T cell response. Here, we designed a novel malaria DNA vaccine gp96NTD-CSP, which was constructed by fusing the full-length of CSP with the N-terminal domain of gp96 that deleted the endoplasmic reticulum-localized motif KDEL, and investigated its protective efficacy. We found that the fusion protein gp96NTD-CSP was mainly distributed on the surface of eukaryotic cells after transfection and could be sensed as a “danger signal” by the host immune system. Interestingly, both liver parasite burden and parasitemia in mice immunized with gp96NTD-CSP were significantly lower than those in the mice immunized either with gp96NTD, CSP, or gp96NTD-SYVPSAEQI, which was constructed by fusing the CSP-specific CD8+ T cell epitope with the N-terminal domain of gp96 deleted with KDEL. Consistently, both the level of CSP-specific antibody and the frequency of IFN-γ secreted-CSP-specific CD8+ T cells were much higher in mice immunized with gp96NTD-CSP than those in the mice immunized either with gp96NTD, CSP, or gp96NTD-SYVPSAEQI. Our results suggest that the malaria DNA vaccine gp96NTD-CSP could induce both humoral and cellular immune responses, which is attributed to the adjuvant effect of gp96NTD and full-length CSP.

Keywords

Malaria DNA vaccine gp96NTD-CSP CSP-specific antibody CD8+ T cell response 

Notes

Acknowledgments

This work was supported by the Natural Science Foundation of China (WX 81271859) and the Natural Science Foundation of Military (WX CWS12J093). We thank Dr. Nicchitta from Duke University for providing us with gp96 plasmid.

References

  1. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277(17):15028–15034CrossRefPubMedGoogle Scholar
  2. Baker-LePain JC, Sarzotti M, Fields TA, Li CY, Nicchitta CV (2002) GRP94 (gp96) and GRP94 N-terminal geldanamycin binding domain elicit tissue nonrestricted tumor suppression. J Exp Med 196(11):1447–1459CrossRefPubMedCentralPubMedGoogle Scholar
  3. Bejon P, Lusingu J, Olotu A, Leach A, Lievens M, Vekemans J, Mshamu S, Lang T, Gould J, Dubois MC, Demoitie MA, Stallaert JF, Vansadia P, Carter T, Njuguna P, Awuondo KO, Malabeja A, Abdul O, Gesase S, Mturi N, Drakeley CJ, Savarese B, Villafana T, Ballou WR, Cohen J, Riley EM, Lemnge MM, Marsh K, von Seidlein L (2008) Efficacy of RTS, S/AS01E vaccine against malaria in children 5 to 17 months of age. N Engl J Med 359(24):2521–2532CrossRefPubMedCentralPubMedGoogle Scholar
  4. Belnoue E, Costa FT, Frankenberg T, Vigario AM, Voza T, Leroy N, Rodrigues MM, Landau I, Snounou G, Renia L (2004) Protective T cell immunity against malaria liver stage after vaccination with live sporozoites under chloroquine treatment. J Immunol 172(4):2487–2495CrossRefPubMedGoogle Scholar
  5. Bijker EM, Bastiaens GJ, Teirlinck AC, van Gemert GJ, Graumans W, van de Vegte-Bolmer M, Siebelink-Stoter R, Arens T, Teelen K, Nahrendorf W, Remarque EJ, Roeffen W, Jansens A, Zimmerman D, Vos M, van Schaijk BC, Wiersma J, van der Ven AJ, de Mast Q, van Lieshout L, Verweij JJ, Hermsen CC, Scholzen A, Sauerwein RW (2013) Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity. Proc Natl Acad Sci U S A 110(19):7862–7867CrossRefPubMedCentralPubMedGoogle Scholar
  6. Brice GT, Dobano C, Sedegah M, Stefaniak M, Graber NL, Campo JJ, Carucci DJ, Doolan DL (2007) Extended immunization intervals enhance the immunogenicity and protective efficacy of plasmid DNA vaccines. Microbes Infect 9(12–13):1439–1446CrossRefPubMedGoogle Scholar
  7. Chen J, Xu W, Zhou T, Ding Y, Duan J, Huang F (2009) Inhibitory role of toll-like receptors agonists in Plasmodium yoelii liver stage development. Parasite Immunol 31(8):466–473CrossRefPubMedGoogle Scholar
  8. Coban C, Kobiyama K, Aoshi T, Takeshita F, Horii T, Akira S, Ishii KJ (2011) Novel strategies to improve DNA vaccine immunogenicity. Curr Gene Ther 11(6):479–484CrossRefPubMedGoogle Scholar
  9. Crotty S (2011) Follicular helper CD4 T cells (TFH). Annu Rev Immunol 29:621–663CrossRefPubMedGoogle Scholar
  10. Ding Y, Huang X, Liu T, Fu Y, Tan Z, Zheng H, Zhou T, Dai J, Xu W (2012) The Plasmodium Circumsporozoite Protein, a Novel NF-kappaB Inhibitor, Suppresses the Growth of SW480. Pathol Oncol Res 18(4):895–902CrossRefPubMedGoogle Scholar
  11. Dobano C, Widera G, Rabussay D, Doolan DL (2007) Enhancement of antibody and cellular immune responses to malaria DNA vaccines by in vivo electroporation. Vaccine 25(36):6635–6645CrossRefPubMedGoogle Scholar
  12. Doody AD, Kovalchin JT, Mihalyo MA, Hagymasi AT, Drake CG, Adler AJ (2004) Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function. J Immunol 172(10):6087–6092CrossRefPubMedCentralPubMedGoogle Scholar
  13. Doolan DL, Hoffman SL (1999) IL-12 and NK cells are required for antigen-specific adaptive immunity against malaria initiated by CD8+ T cells in the Plasmodium yoelii model. J Immunol 163(2):884–892PubMedGoogle Scholar
  14. Draper SJ, Heeney JL (2010) Viruses as vaccine vectors for infectious diseases and cancer. Nat Rev Microbiol 8(1):62–73CrossRefPubMedGoogle Scholar
  15. Duffy PE, Sahu T, Akue A, Milman N, Anderson C (2012) Pre-erythrocytic malaria vaccines: identifying the targets. Expert Rev Vaccines 11(10):1261–1280CrossRefPubMedCentralPubMedGoogle Scholar
  16. Foquet L, Hermsen CC, van Gemert GJ, Van Braeckel E, Weening KE, Sauerwein R, Meuleman P, Leroux-Roels G (2014) Vaccine-induced monoclonal antibodies targeting circumsporozoite protein prevent Plasmodium falciparum infection. J Clin Invest 124(1):140–144CrossRefPubMedCentralPubMedGoogle Scholar
  17. Jobe O, Lumsden J, Mueller AK, Williams J, Silva-Rivera H, Kappe SH, Schwenk RJ, Matuschewski K, Krzych U (2007) Genetically attenuated Plasmodium berghei liver stages induce sterile protracted protection that is mediated by major histocompatibility complex Class I-dependent interferon-gamma-producing CD8+ T cells. J Infect Dis 196(4):599–607CrossRefPubMedCentralPubMedGoogle Scholar
  18. Kebaier C, Voza T, Vanderberg J (2009) Kinetics of mosquito-injected Plasmodium sporozoites in mice: fewer sporozoites are injected into sporozoite-immunized mice. PLoS Pathog 5(4):e1000399CrossRefPubMedCentralPubMedGoogle Scholar
  19. Kumar KA, Sano G, Boscardin S, Nussenzweig RS, Nussenzweig MC, Zavala F, Nussenzweig V (2006) The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites. Nature 444(7121):937–940CrossRefPubMedGoogle Scholar
  20. Liu B, Dai J, Zheng H, Stoilova D, Sun S, Li Z (2003) Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases. Proc Natl Acad Sci U S A 100(26):15824–15829CrossRefPubMedCentralPubMedGoogle Scholar
  21. Mauduit M, Tewari R, Depinay N, Kayibanda M, Lallemand E, Chavatte JM, Snounou G, Renia L, Gruner AC (2010) Minimal role for the circumsporozoite protein in the induction of sterile immunity by vaccination with live rodent malaria sporozoites. Infect Immun 78(5):2182–2188CrossRefPubMedCentralPubMedGoogle Scholar
  22. Moorthy VS, Ballou WR (2009) Immunological mechanisms underlying protection mediated by RTS, S: a review of the available data. Malar J 8:312CrossRefPubMedCentralPubMedGoogle Scholar
  23. Mueller AK, Labaied M, Kappe SH, Matuschewski K (2005) Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature 433(7022):164–167CrossRefPubMedGoogle Scholar
  24. Nussenzweig RS, Vanderberg J, Most H, Orton C (1967) Protective immunity produced by the injection of x-irradiated sporozoites of plasmodium berghei. Nature 216(5111):160–162CrossRefPubMedGoogle Scholar
  25. Olotu A, Lusingu J, Leach A, Lievens M, Vekemans J, Msham S, Lang T, Gould J, Dubois MC, Jongert E, Vansadia P, Carter T, Njuguna P, Awuondo KO, Malabeja A, Abdul O, Gesase S, Mturi N, Drakeley CJ, Savarese B, Villafana T, Lapierre D, Ballou WR, Cohen J, Lemnge MM, Peshu N, Marsh K, Riley EM, von Seidlein L, Bejon P (2011) Efficacy of RTS, S/AS01E malaria vaccine and exploratory analysis on anti-circumsporozoite antibody titres and protection in children aged 5–17 months in Kenya and Tanzania: a randomised controlled trial. Lancet Infect Dis 11(2):102–109CrossRefPubMedCentralPubMedGoogle Scholar
  26. Seki S, Abo T, Masuda T, Ohteki T, Kanno A, Takeda K, Rikiishi H, Nagura H, Kumagai K (1990) Identification of activated T cell receptor gamma delta lymphocytes in the liver of tumor-bearing hosts. J Clin Invest 86(2):409–415CrossRefPubMedCentralPubMedGoogle Scholar
  27. Spring M, Murphy J, Nielsen R, Dowler M, Bennett JW, Zarling S, Williams J, de la Vega P, Ware L, Komisar J, Polhemus M, Richie TL, Epstein J, Tamminga C, Chuang I, Richie N, O'Neil M, Heppner DG, Healer J, O'Neill M, Smithers H, Finney OC, Mikolajczak SA, Wang R, Cowman A, Ockenhouse C, Krzych U, Kappe SH (2013) First-in-human evaluation of genetically attenuated Plasmodium falciparum sporozoites administered by bite of Anopheles mosquitoes to adult volunteers. Vaccine 31(43):4975–4983CrossRefPubMedGoogle Scholar
  28. Takemoto S, Nishikawa M, Otsuki T, Yamaoka A, Maeda K, Ota A, Takakura Y (2009) Enhanced generation of cytotoxic T lymphocytes by increased cytosolic delivery of MHC class I epitope fused to mouse heat shock protein 70 via polyhistidine conjugation. J Control Release 135(1):11–18CrossRefPubMedGoogle Scholar
  29. Takemoto S, Nishikawa M, Guan X, Ohno Y, Yata T, Takakura Y (2010) Enhanced generation of cytotoxic T lymphocytes by heat shock protein 70 fusion proteins harboring both CD8(+) T cell and CD4(+) T cell epitopes. Mol Pharm 7(5):1715–1723CrossRefPubMedGoogle Scholar
  30. Tarun AS, Dumpit RF, Camargo N, Labaied M, Liu P, Takagi A, Wang R, Kappe SH (2007) Protracted sterile protection with Plasmodium yoelii pre-erythrocytic genetically attenuated parasite malaria vaccines is independent of significant liver-stage persistence and is mediated by CD8+ T cells. J Infect Dis 196(4):608–616CrossRefPubMedGoogle Scholar
  31. Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P, Kirschning CJ, Da Costa C, Rammensee HG, Wagner H, Schild H (2002) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 277(23):20847–20853CrossRefPubMedGoogle Scholar
  32. VanBuskirk KM, O'Neill MT, De La Vega P, Maier AG, Krzych U, Williams J, Dowler MG, Sacci JB Jr, Kangwanrangsan N, Tsuboi T, Kneteman NM, Heppner DG Jr, Murdock BA, Mikolajczak SA, Aly AS, Cowman AF, Kappe SH (2009) Preerythrocytic, live-attenuated Plasmodium falciparum vaccine candidates by design. Proc Natl Acad Sci U S A 106(31):13004–13009CrossRefPubMedCentralPubMedGoogle Scholar
  33. Walther M, Dunachie S, Keating S, Vuola JM, Berthoud T, Schmidt A, Maier C, Andrews L, Andersen RF, Gilbert S, Poulton I, Webster D, Dubovsky F, Tierney E, Sarpotdar P, Correa S, Huntcooke A, Butcher G, Williams J, Sinden RE, Thornton GB, Hill AV (2005) Safety, immunogenicity and efficacy of a pre-erythrocytic malaria candidate vaccine, ICC-1132 formulated in Seppic ISA 720. Vaccine 23(7):857–864CrossRefPubMedGoogle Scholar
  34. Wang R, Richie TL, Baraceros MF, Rahardjo N, Gay T, Banania JG, Charoenvit Y, Epstein JE, Luke T, Freilich DA, Norman J, Hoffman SL (2005) Boosting of DNA vaccine-elicited gamma interferon responses in humans by exposure to malaria parasites. Infect Immun 73(5):2863–2872CrossRefPubMedCentralPubMedGoogle Scholar
  35. White MT, Bejon P, Olotu A, Griffin JT, Riley EM, Kester KE, Ockenhouse CF, Ghani AC (2013) The relationship between RTS, S vaccine-induced antibodies, CD4(+) T cell responses and protection against Plasmodium falciparum infection. PLoS ONE 8(4):e61395CrossRefPubMedCentralPubMedGoogle Scholar
  36. World Health Organization (2012) word malaria report. http://www.who.int/malaria/publications/world_malaria_report_2012/en/

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Pathogenic BiologyThe Third Military Medical UniversityChongqingPeople’s Republic of China

Personalised recommendations