Skip to main content

Advertisement

Log in

Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Mosquitoes are blood-feeding insects and serve as the most important vectors for spreading human diseases such as malaria, yellow fever, dengue fever, and filariasis. The continued use of synthetic insecticides has resulted in resistance in mosquitoes. Synthetic insecticides are toxic and affect the environment by contaminating soil, water, and air, and then natural products may be an alternative to synthetic insecticides because they are effective, biodegradable, eco-friendly, and safe to environment. Botanical origin may serve as suitable alternative biocontrol techniques in the future. The present study was carried out to establish the larvicidal potential of leaf extracts of Gmelina asiatica and synthesized silver nanoparticles using aqueous leaf extract against late third instar larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV–visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the larvae of An. stephensi (lethal dose (LC50) = 22.44 μg/mL; LC90 40.65 μg/mL), Ae. aegypti (LC50 = 25.77 μg/mL; LC90 45.98 μg/mL), and C. quinquefasciatus (LC50 = 27.83 μg/mL; LC90 48.92 μg/mL), respectively. No mortality was observed in the control. This is the first report on mosquito larvicidal activity of plant-synthesized nanoparticles. Thus, the use of G. asiatica to synthesize silver nanoparticles is a rapid, eco-friendly, and a single-step approach and the AgNps formed can be potential mosquito larvicidal agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Apparanantham T, Chelladurai V, Subramanian V (1982) Some tribal folk medicines of point calimere (Kodikkarai) in Tamil Nadu. Bull Med Ethnobot Res 3:173–7

    Google Scholar 

  • Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector-Borne Zoonotic Dis 12(3):262–268

    Article  PubMed  Google Scholar 

  • Benn T, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  CAS  PubMed  Google Scholar 

  • Bernhard L, Bernhard P, Magnusson P (2003) Management of patients with lymphoedema caused by filariasis in North-eastern Tanzania: alternative approaches. Physiotherapy 89:743–749

    Article  Google Scholar 

  • Borase HP, Patil CD, Salunkh RB, Narkhede CP, Salunke BK (2013) Phyto-synthesized silver nanoparticles: a potent mosquito biolarvicidal agent. J Nanomed Biother Discov 3(1):1–7

    Article  Google Scholar 

  • Cho KH, Park JE, Osaka T, Park SG (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51(5):956–60

    Article  CAS  Google Scholar 

  • Feng X, Ma H, Huang S, Pan W, Zhang X, Tian F, Gao C, Cheng Y, Luo J (2006) Aqueous-organic phase-transfer of highly stable gold, silver, and platinum nanoparticles and new route for fabrication of gold nanofilms at the oil/water interface and on solid supports. J Phys Chem B 110:12311–17

    Article  CAS  PubMed  Google Scholar 

  • Finney DJ (1971) Probit analysis, vol 551. Cambridge University Press, London, pp 68–72

    Google Scholar 

  • Govindarajan M (2010a) Larvicidal and repellent activities of Sida acuta Burm. F. (family: Malvaceae) against three important vector mosquitoes. Asian Pac J Trop Med 3(9):691–695

    Article  Google Scholar 

  • Govindarajan M (2010b) Larvicidal efficacy of Ficus benghalensis L. plant leaf extracts against Culex quinquefasciatus Say, Aedes aegypti L. and Anopheles stephensi L. (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 14(2):107–111

    CAS  PubMed  Google Scholar 

  • Govindarajan M (2011a) Evaluation of indigenous plant extracts against the malarial vector, Anopheles stephensi (Liston) (Diptera: Culicidae). Parasitol Res 109:93–103

    Article  PubMed  Google Scholar 

  • Govindarajan M (2011b) Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac J Trop Med 4(2):106–111

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M (2011c) Evaluation of Andrographis paniculata Burm.f. (Family: Acanthaceae) extracts against Culex quinquefasciatus (Say.) and Aedes aegypti (Linn.) (Diptera: Culicidae). Asian Pacific J Trop Med 4:176–181

    Article  Google Scholar 

  • Govindarajan M, Jebanesan A, Reetha D (2005) Larvicidal effect of extracellular secondary metabolites of different fungi against the mosquito, Culex quinquefasciatus Say. Trop Biomed 22(1):1–3

    CAS  PubMed  Google Scholar 

  • Govindarajan M, Jebanesan A, Pushpanathan T (2008a) Larvicidal and ovicidal activity of Cassia fistula Linn. Leaf extract against filarial and malarial vector mosquitoes. Parasitol Res 102:289–292

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M, Jebanesan A, Pushpanathan T, Samidurai K (2008b) Studies on effect of Acalypha indica L. (Euphorbiaceae) leaf extracts on the malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 103(3):691–695

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011a) Ovicidal and repellent activities of botanical extracts against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). Asian Pacific J Trop Biomed 1:43–48

    Article  CAS  Google Scholar 

  • Govindarajan M, Sivakumar R, Amsath A, Niraimathi S (2011b) Mosquito larvicidal properties of Ficus benghalensis L. (Family: Moraceae) against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac J Trop Med 4(7):505–509

    Article  CAS  PubMed  Google Scholar 

  • Gubler DJ (1998) Dengue and dengue haemorrhagic fever. Clin Microbiol Rev 11:480–96

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104

    Article  Google Scholar 

  • Iam NS, Homklinchan C, Larpudomlert R, Warisnoicharoen W (2010) UV irradiation-induced silver nanoparticles as mosquito larvicides. J Appl Sci 10(23):3132–3136

    Article  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Kirthi AV, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109:185–194

    Article  PubMed  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76

    Article  CAS  PubMed  Google Scholar 

  • Joshi V, Singhi M, Chaudhary RC (1996) Transovarial transmission of dengue 3 virus by Aedes aegypti. Trans R Soc Trop Med Hyg 90:643–4

    Article  CAS  PubMed  Google Scholar 

  • Kawashita M, Tsuneyama S, Miyaji F, Kokubo T, Kozuka H, Yamamoto K (2000) Antibacterial silver-containing silica glass prepared by the sol–gel method. Biomaterials 21:393–98

    Article  CAS  PubMed  Google Scholar 

  • Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Velayutham K (2011) Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites. Parasitol Res 109(2):461–472

    Article  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Vincent S, Barnard DR (2012) Mosquito larvicidal properties of Orthosiphon thymiflorus (Roth) Sleesen. (Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Asian Pac J Trop Med 5(4):299–305

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J ChemTech Biotechnol 84:151–157

    Article  CAS  Google Scholar 

  • Kyriacou SV, Brownlow WJ, Xu XN (2004) Using nanoparticle optic hitosan assay for direct observation of the function of antimicrobial agents in single live bacterial cells. Biochemistry 43:140–47

    Article  CAS  PubMed  Google Scholar 

  • Laban G, Nies LF, Turco RF, Bickham JW, Sepúlveda MS (2010) The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 19(1):185–195

    Article  CAS  PubMed  Google Scholar 

  • Lee H (2007) Fabrication of silver nanoparticles via self-regulated reduction by 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. Kor J Chem Eng 24:856–9

    Article  Google Scholar 

  • Lima MG, Maia IC, Sousa BD, Morais SM, Freitas SM (2006) Effect of stalk and leaf extracts from Euphorbiaceae species on Aedes aegypti (Diptera, Culicidae) larvae. Rev Inst Med Trop Sao Paulo 48(4):21–214

    Article  Google Scholar 

  • Maheswaran R, Sathis S, Ignacimuthu S (2008) Larvicidal activity of Leucus aspera (Willd.) against the larvae of Culex quinquefasciatus Say. and Aedes aegypti. Int J Biol 2(3):214–217

    Google Scholar 

  • Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108(6):1541–9

    Article  PubMed  Google Scholar 

  • Miao AJ, Luo Z, Chen CS, Chin WC, Santschi PH, Quigg A (2010) Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS One 5:15196

    Article  Google Scholar 

  • Mohan L, Sharma P, Srivastava CN (2005) Evaluation of Solanum xanthocarpum extracts as mosquito larvicides. J Environ Biol 26:399–401

    PubMed  Google Scholar 

  • Morais SM, Cavalcanti ES, Bertini LM, Oliveira CL, Rodrigues JR, Cardoso JH (2006) Larvicidal activity of essential oils from Brazilian Croton species against Aedes aegypti L. J Am Mosq Control Assoc 22(1):161–164

    Article  CAS  PubMed  Google Scholar 

  • Muthukumaran U, Govindarajan M, Rajeswary M (2014) Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-014-4265-2

    Google Scholar 

  • Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK (2012) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata. Parasitol Res 111(2):555–62

    Article  PubMed  Google Scholar 

  • Priyadarshini K, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang J-S, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111(3):997–1006

    Article  PubMed  Google Scholar 

  • Rahman SJ, Sharma SK, Rajagopal R (1989) Manual on entomological surveillance of vector borne diseases. NICD, New Delhi

    Google Scholar 

  • Rajkumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vector. Acta Trop 118(3):196–203

    Article  Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109:823–831

    Article  PubMed  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702

    Article  PubMed  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry MJ (2004) Rapid synthesis of Au, Ag and bimetallic Au shell nanoparticles using Neem. J Colloid Interface Sci 275:496–502

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Mohan L, Srivastava CN (2009) Amaranthus oleracea and Euphorbia hirta: natural potential larvicidal agents against the urban Indian malaria vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 106:171–176

    Article  PubMed  Google Scholar 

  • Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2010) Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology 5(3):432–44

    Article  PubMed  Google Scholar 

  • Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84

    Article  PubMed  Google Scholar 

  • Soni N, Prakash S (2013) Possible mosquito control by silver nanoparticles synthesized by soil fungus (Aspergillus niger 2587). Adv Nanoparticles 2:125–132

    Article  Google Scholar 

  • Thenmozhi V, Tewari SC, Manavalan R, Balasubramanian A, Gajanana A (2000) Natural vertical transmission of dengue viruses in Aedes aegypti in southern India. Trans R Soc Trop Med Hyg 94:507

    Article  CAS  PubMed  Google Scholar 

  • Tiwari DK, Behari J (2009) Biocidal nature of treatment of Ag-nanoparticle and ultrasonic irradiation in Escherichia coli dh5. Adv Biol Res 3(3–4):89–95

    CAS  Google Scholar 

  • Trpis M, Hausermann W (1978) Genetics of house-entering behaviour in East African populations of Aedes aegypti (L) (Diptera: Culicidae) and its relevance to speciation. Bull Entomol Res 8:521–32

    Article  Google Scholar 

  • Veerekumar K, Govindarajan M, Rajeswary M (2013) Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112(12):4073–4085

    Article  Google Scholar 

  • Veerekumar K, Govindarajan M, Rajeswary M (2014) Low-cost and ecofriendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:1775–1785

    Article  Google Scholar 

  • Vikneshwaran D, Viji M, Raja Lakshmi K (2008) Ethnomedicinal plants survey and documentation related to Paliyar community. Ethnobotanical Leaflets 12:1108–15

    Google Scholar 

  • WHO (1992) Lymphatic filariasis: the disease and its control. 5th report. Who Expert Committee on Filariasis. Technical Report Series. p 821

  • World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides. Communicable disease control, prevention and eradication, WHO pesticide evaluation scheme. WHO, Geneva, WHO/CDS/WHOPES/GCDPP/1.3

  • Zarchi AAK, Mahmoodzadeh A, Vatani H (2006) A survey on malaria and some related factors in south east of Caspian Sea. Pak J Med Sci 22(4):489–492

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor and Head of the Department of Zoology, Annamalai University, for the laboratory facilities provided. The authors would also like to acknowledge the cooperation of staff members of the VCRC (ICMR), Pondicherry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marimuthu Govindarajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthukumaran, U., Govindarajan, M., Rajeswary, M. et al. Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes. Parasitol Res 114, 1817–1827 (2015). https://doi.org/10.1007/s00436-015-4368-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4368-4

Keywords

Navigation