Parasitology Research

, Volume 114, Issue 5, pp 1703–1709 | Cite as

Echinococcus multilocularis infection in the field vole (Microtus agrestis): an ecological model for studies on transmission dynamics

  • Ian David WoolseyEmail author
  • Nethe Eva Touborg Bune
  • Per Moestrup Jensen
  • Peter Deplazes
  • Christian Moliin Outzen Kapel
Original Paper


We propose a model involving the oral inoculation of Echinococcus multilocularis eggs in a vole species and examine the infection dynamics in a dose-response experiment. Defined doses, 100 (n = 8), 500 (n = 5) and 1000 (n = 5) of E. multilocularis eggs were used to inoculate Microtus agrestis. Four female C57BL/6j mice were inoculated with 1000 eggs as positive controls. The groups inoculated with 100 and 500 eggs exhibited significantly higher lesion numbers, and relatively smaller lesion size was observed in the 1000 dose group. Undetectable abortive lesions may be responsible for some form of resource limitation early in the infection, resulting in lower lesion counts and size in the 1000 dose group. The C57BL/6j mice exhibited significantly fewer lesions than M. agrestis. The feasibility of measuring corticosterone (which has been shown to downregulate Th1 cytokines) in rodent hair and tumour necrosis factor (TNF) production in spleen cells was demonstrated by a positive correlation between corticosterone levels and higher lesion counts and TNF production in C57BL/6j, respectively. These results suggest that M. agrestis is more prone to a Th2 immune response than C57BL/6j, which is associated with E. multilocularis susceptibility and may explain why the parasite develops more slowly in murine models. This is the first data to suggest that M. agrestis is capable of supporting E. multilocularis transmission and thus may be suited as a model to describe the infection dynamics in an intermediate host that affects transmission under natural conditions.


Echinococcus multilocularis Microtus agrestis TNF Corticosterone 



The authors would like to thank Otso Huitu and Heikki Henttonen at METLA (Finnish Forest Research Institute, Finland) for providing the voles for this study. This study was conducted under the framework of the project “Echinococcus multilocularis in Rodents (EMIRO)” funded by EMIDA, Era-Net under the EU-FP7.

Conflict of interest

The authors declare no conflict of interest.


  1. Accorsi PA, Carloni E, Valsecchi P, Viggiani R, Gamberoni M, Tamanini C, Seren E (2008) Cortisol determination in hair and faeces from domestic cats and dogs. Gen Comp Endocrinol 155:398–402CrossRefPubMedGoogle Scholar
  2. Amiot F, Voung P, Defontaines M, Pater C, Dautry F, Liance M (1999) Secondary alveolar echinococcosis in lymphotoxi-α and tumor necrosis factor-α deficient mice: exacerbation of Echinococcus multilocularis larval growh is associated with cellular changes in the periparasitic granuloma. Parasite Immunol 21:475–483CrossRefPubMedGoogle Scholar
  3. Atkinson JA, Gray DJ, Clements AC, Barnes TS, McManus DP, Yang YR (2013) Environmental changes impacting Echinococcus transmission: research to support predictive surveillance and control. Glob Chang Biol 19:677–688CrossRefPubMedGoogle Scholar
  4. Aumüller E, Schramm G, Gronow A, Brehm K, Gibbs BF, Doenhoff MJ, Haas H (2004) Echinococcus multilocularis metacestode extract triggers human basophils to release interleukin-4. Parasite Immunol 26:387–395CrossRefPubMedGoogle Scholar
  5. Baschant U, Tuckermann J (2010) The role of the glucocorticoid receptor in inflammation and immunity. J Steroid Biochem Mol Biol 120:69–75CrossRefPubMedGoogle Scholar
  6. Blotta MH, DeKruyff RH, Umetsu DT (1997) Cortiscosteroids inhibit IL-12 production in human monocytes and enhance their capacity to induce il-4 synthesis in CD4+ lymphocytes. J Immunol 158:5589–5595PubMedGoogle Scholar
  7. Burlet P, Deplazes P, Hegglin D (2011) Age, season and spatio-temporal factors affecting the prevalence of Echinococcus multilocularis and Taenia taeniaeformis in Arvicola terrestris. Parasit Vectors 4:6CrossRefPubMedCentralPubMedGoogle Scholar
  8. Busillo JM, Cidlowski JA (2013) The five Rs of glucocorticoid action during inflammation: ready, reinforce, repress, resolve, and restore. Trends Endocrinol Metab 24:109–119CrossRefPubMedCentralPubMedGoogle Scholar
  9. Chamorro S et al (2009) TLR triggering on tolerogenic dendritic cells results in TLR2 up-regulation and a reduced proinflammatory immune program. J Immunol 183:2984–2994CrossRefPubMedGoogle Scholar
  10. Christensen CM, Barnes EH, Nansen P, Roepstorff A, Slotved HC (1995) Experimental Oesphagostomum dentatum infection in the pig: worm populations resulting from single infections with three doses of larvae. Int J Parasitol 25:1491–1498CrossRefPubMedGoogle Scholar
  11. Coyne MJ, Smith G, Johnstone C (1991) A study of the mortality and fecundity of Haemonchus contortus in sheep following experimental infections. Int J Parasitol 21:847–853CrossRefPubMedGoogle Scholar
  12. Davenport MD, Tiefenbacher S, Lutz CK, Novak MA, Meyer JS (2006) Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen Comp Endocrinol 147:255–261CrossRefPubMedGoogle Scholar
  13. Davidson RK, Romig T, Jenkins E, Tryland M, Robertson LJ (2012) The impact of globalisation on the distribution of Echinococcus multilocularis. Trends Parasitol 28:239–247CrossRefPubMedGoogle Scholar
  14. DeKruyff RH, Fang Y, Umetsu DT (1998) Corticosteroids enhance the capacity of macrophages to induce Th2 cytokine synthesis in CD4+ lymphocytes by inhibiting IL-12 production. J Immunol 160:2231–2237PubMedGoogle Scholar
  15. Deplazes P, Grimm F, Sydler T, Tanner I, Kapel CM (2005) Experimental alveolar echinococcosis in pigs, lesion development and serological follow up. Vet Parasitol 130:213–222CrossRefPubMedGoogle Scholar
  16. Eckert J, Deplazes P, Kern P (2011) Alveolar echinococcosis (Echinococcus multilocularis).Google Scholar
  17. Emery I, Leclerc C, Sengphommachanh K, Vuitton DA, Liance M (1998) In vivo treatment with recombinant IL-12 protects C57BL/6J mice against secondary alveolar echinococcosis. Parasite Immunol 20:81–91CrossRefPubMedGoogle Scholar
  18. Emery I, Liance M, Deriaud E, Vuitton DA, Houin R, Leclerc C (1996) Characterization of T-cell immune responses of Echinococcus multilocularis-infected C57BL/6J mice. Parasite Immunol 18:463CrossRefPubMedGoogle Scholar
  19. Gottstein B (2010) Echinococcus spp. and echinococcosis. Acta Vet Scand 52(Suppl 1):S5CrossRefPubMedCentralGoogle Scholar
  20. Gottstein B, Dai WJ, Walker M, Stettler M, Muller N, Hemphill A (2002) An intact laminated layer is important for the establishment of secondary Echinococcus multilocularis infection. Parasitol Res 88:822–828CrossRefPubMedGoogle Scholar
  21. Hildreth MB, Granholm NH (2003) Effect of mouse strain variations and cortisone treatment on the establishment and growth of primary Echinococcus multilocularis hydatid cysts. J Parasitol 89:493–495CrossRefPubMedGoogle Scholar
  22. Issaadi N, Fraize M, Azzouz S, Petavy AF, Sarciron ME (2006) Echinococcus multilocularis: immunity response to purified alkaline phosphatase in BALB/c mice. Parasitol Res 98:218–226CrossRefPubMedGoogle Scholar
  23. Kato N, Nonaka N, Oku Y, Kamiya M (2005) Modified cellular immune responses in dogs infected with Echinococcus multilocularis. Parasitol Res 95:339–345CrossRefPubMedGoogle Scholar
  24. Liance M, Bresson-Hadni S, Meyer JP, Houin R, Vuitton DA (1990) Cellular immunity in experimental Echinococcus multilocularis infection I. Sequential and comparative study of specific in vivo delayed-type hypersensitivity against E. multilocularis antigens in resistant and sensitive mice. Clin Exp Immunol 82:373–377CrossRefPubMedCentralPubMedGoogle Scholar
  25. Matsumoto J, Yagi K (2008) Experimental studies on Echinococcus multilocularis in Japan, focusing on biohazardous stages of the parasite. Exp Parasitol 119:534–541CrossRefPubMedGoogle Scholar
  26. Mitchell GF, Rajasekariah GR, Rickard D (1980) A mechanism to account for mouse strain variation in resistance to the larval cestode. Immunology 39:481–489PubMedCentralPubMedGoogle Scholar
  27. Ohbayashi M (1960) Studies on echinococcosis X: histological observations on experimental cases of multilocular echinococcosis. Jpn J Vet Res 8:134–160Google Scholar
  28. Ohbayashi M, Rausch RL, Fay FH (1971) On the ecology and distribution of Echinococcus spp. (Cestoda: Taeniidae), and characteristics of their development in the intermediate host: II. Comparative studies on the development of larval E. multilocularis. Leukart, 1863 in the intermediate host. Japanese Journal of Veterinary Research 19 (supplement):1–53Google Scholar
  29. Piemonti L et al (1999) Glucocorticoids affect human dendritic cell differentiation and maturation. J Immunol 162:6473–6481PubMedGoogle Scholar
  30. Playford MC, Kamiya M (1992) Immune response to Echinococcus multilocularis infection in the mouse model: a review. Jpn J Vet Res 40:113–130PubMedGoogle Scholar
  31. Playford MC, Ooi H, Ito M, Kamiya M (1993) Lymphocyte engraftment conveys immunity and alters parasite development in scid mice infected with Echinococcus multilocularis. Parasitol Res 79:261–268CrossRefPubMedGoogle Scholar
  32. Pleydell DR, Raoul F, Tourneux F, Danson FM, Graham AJ, Craig PS, Giraudoux P (2004) Modelling the spatial distribution of Echinococcus multilocularis infection in foxes. Acta Trop 91:253–265CrossRefPubMedGoogle Scholar
  33. Romani L, Puccetti P, Bistoni F (1997) Interleukin-12 in infectious diseases. Clin Microbiol Rev 10:611–636PubMedCentralPubMedGoogle Scholar
  34. Romig T, Bilger B (1999) Animal models of echinococcosis. In: Zak O, Sande MA (eds) Animal models of infection. Academic, San Diego, pp 877–884CrossRefGoogle Scholar
  35. Russell E, Koren G, Rieder M, Van Uum S (2012) Hair cortisol as a biological marker of chronic stress: current status, future directions and unanswered questions. Psychoneuroendocrinology 37:589–601CrossRefPubMedGoogle Scholar
  36. Russell WMW, Burch RL, Hume CW (1959) The principles of humane experimental technique. Methuen, United KingdomGoogle Scholar
  37. Rutella S, Danese S, Leone G (2006) Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 108:1435–1440CrossRefPubMedGoogle Scholar
  38. Stieger C, Hegglin D, Schwarzenback G, Mathis A, Deplazes P (2002) Spatial and temporal aspects of urban transmission of Echinococcus multilocularis. Parasitilogy 124:631–640Google Scholar
  39. Swantek JL, Cobb MH, Geppert TD (1997) Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-alpha) translation: glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK. Mol Cell Biol 17:6247–6282Google Scholar
  40. Tobler A, Meier R, Seitz M, Dewald B, Baggiolini M, Fey MF (1992) Glucocorticoids downregulate gene expression of GM-CSF, NAP-1/IL-8 and IL-6, but not M-CSF in human fibroblasts. Blood 79:45–51PubMedGoogle Scholar
  41. Vegiopoulos A, Herzig S (2007) Glucocorticoids, metabolism and metabolic diseases. Mol Cell Endocrinol 275:43–61CrossRefPubMedGoogle Scholar
  42. Vuitton DA (2003) The ambiguous role of immunity in echinococcosis: protection of the host or of the parasite? Acta Trop 85:119–132CrossRefPubMedGoogle Scholar
  43. Vuitton DA, Gottstein B (2010) Echinococcus multilocularis and its intermediate host: a model of parasite-host interplay. J Biomed Biotechnol 2010:923193CrossRefPubMedCentralPubMedGoogle Scholar
  44. Waage A, Slupphaug G, Shalaby R (1990) Glucocorticoids inhibit the production of IL6 from monocytes, endothelial cells and fibroblasts. Eur J Immunol 20:2439–2443CrossRefPubMedGoogle Scholar
  45. Wang X et al (2010) Production and immunoanalytical application of 32 monoclonal antibodies against metacestode somatic antigens of Echinococcus multilocularis. Parasitol Res 107:177–185CrossRefPubMedGoogle Scholar
  46. Webster Marketon JI, Glaser R (2008) Stress hormones and immune function. Cell Immunol 252:16–26CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ian David Woolsey
    • 1
    Email author
  • Nethe Eva Touborg Bune
    • 1
  • Per Moestrup Jensen
    • 1
  • Peter Deplazes
    • 2
  • Christian Moliin Outzen Kapel
    • 1
  1. 1.Section for Organismal Biology, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
  2. 2.Institute of ParasitologyUniversity of ZurichZurichSwitzerland

Personalised recommendations