Parasitology Research

, Volume 114, Issue 4, pp 1607–1610 | Cite as

Individual identification of endangered species using mosquito blood meals: a proof-of-concept study in Iberian lynx

  • Josué Martínez-de la PuenteEmail author
  • María Méndez
  • Santiago Ruiz
  • José A. Godoy
  • Ramón C. Soriguer
  • Jordi Figuerola
Short Communication


Host identification from mosquito blood meals has been routinely used to identify the feeding preferences of insects in studies on transmission of vector-borne pathogens. Here, we identified for the first time the susceptibility of the endangered Iberian lynx (Lynx pardinus) to the attack of a wild mosquito female, the mosquito Anopheles atroparvus. Furthermore, we used 11 microsatellite markers to test for the utility of vertebrate DNA isolated from insect blood meals for individual identification of wildlife. Only the three smallest markers were successfully amplified; however, this genotype did not match with any of the previously genotyped individuals in southern Spain. These results support the use of DNA from mosquito blood meals as a non-invasive source of DNA and a powerful tool on epidemiological and conservation biology studies. However, as may be the case of other non-invasive sampling methods, the utility of this technique is probably limited by the quantity and quality of vertebrate DNA.


Anopheles atroparvus Diseases Lynx pardinus Non-invasive blood sampling Parasites 



This study was funded by projects CGL2012-30759, CGL2006-10853/BOS, and CGL2010-21540/BOS from the Spanish Ministry of Science and Innovation, RNM157 and RNM6400 of the Junta de Andalucía, European Commission EuroWestNile FP7 Project 261391, and through a contract with the Consejería de Medio Ambiente of the Junta de Andalucía. JMP is supported by a Juan de la Cierva contract. We thank L.A. Vázquez, L. Soriano, I. Martín, J. Moreno Fernandez, E. Perez, and A. Magallanes Martin de Oliva for their help in the laboratory and in mosquito collection and identification. Plácido and Maribel allowed us to work in the Cañada de los Pájaros. This is a contribution of the Molecular Ecology Lab of the EBD-CSIC.


  1. Alcaide M, Rico C, Ruiz S, Soriguer R, Muñoz J, Figuerola J (2009) Disentangling Vector-borne transmission networks: a universal DNA barcoding method to identify vertebrate hosts from arthropod bloodmeals. PLoS ONE 4:e7092CrossRefPubMedCentralPubMedGoogle Scholar
  2. Brunhes J, Rhaim A, Geoffroy B, Angel G, Hervy J-P (2000) Les moustiques de l’Afrique mediterranéenne. IRD Editions: CD ROM PC; OpenURLGoogle Scholar
  3. Burkett-Cadena ND, Ligon RA, Liu M, Hassan HK, Hill GE, Eubanks MD, Unnasch TR (2010) Vector-host interactions in avian nests: do mosquitoes prefer nestlings over adults? Am J Trop Med Hyg 83:395–399CrossRefPubMedCentralPubMedGoogle Scholar
  4. Calvignac-Spencer S, Leendertz FH, Gilbert MTP, Schubert G (2013a) An invertebrate stomach's view on vertebrate ecology. Bioessays 35:1004–1013CrossRefPubMedGoogle Scholar
  5. Calvignac-Spencer S, Merkel K, Kutzner N, Kühl H, Boesch C, Kappeler PM, Metzger S, Schubert G, Leendertz FH (2013b) Carrion fly-derived DNA as a tool for comprehensive and cost-effective assessment of mammalian biodiversity. Mol Ecol 22:915–924CrossRefPubMedGoogle Scholar
  6. Casas-Marce M, Soriano L, López-Bao JV, Godoy JA (2013) Genetics at the verge of extinction: insights from the Iberian lynx. Mol Ecol 22:5503–5515CrossRefPubMedGoogle Scholar
  7. Elizondo-Quiroga A, Flores-Suarez A, Elizondo-Quiroga D, Ponce-Garcia G, Blitvich BJ, Contreras-Cordero JF, Gonzalez-Rojas JI, Mercado-Hernandez R, Beaty BJ, Fernandez-Salas I (2006) Gonotrophic cycle and survivorship of Culex quinquefasciatus (Diptera: Culicidae) using sticky ovitraps in Monterrey, northeastern Mexico. J Am Mosq Control Assoc 22:10–14CrossRefPubMedGoogle Scholar
  8. Kauffman C, Briegel H (2004) Flight performance of the malaria vectors Anopheles gambiae and Anopheles atroparvus. J Vector Ecol 29:140–153Google Scholar
  9. Kelly DW (2001) Why are some people bitten more than others? Trends Parasitol 17:578–581CrossRefPubMedGoogle Scholar
  10. Kent RJ (2009) Molecular methods for arthropod bloodmeal identification and applications to ecological and vector-borne disease studies. Mol Ecol Resour 9:4–18CrossRefPubMedGoogle Scholar
  11. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P (2006) West Nile Virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4:e82CrossRefPubMedCentralPubMedGoogle Scholar
  12. Ligon RA, Burkett-Cadena ND, Liu M, Hill GE, Hassan HK, Unnasch TR (2009) Assessing mosquito feeding patterns on nestling and brooding adult birds using microsatellite markers. Am J Trop Med Hyg 81:534–537PubMedGoogle Scholar
  13. Martínez-de la Puente J, Ruiz S, Soriguer R, Figuerola J (2013) Effect of blood meal digestion and DNA extraction protocol on the success of blood meal source determination in the malaria vector Anopheles atroparvus. Malar J 12:109CrossRefPubMedCentralPubMedGoogle Scholar
  14. Mukabana WR, Takken W, Knols BGJ (2002) Analysis of arthropod bloodmeals using molecular genetic markers. Trends Parasitol 18:505–509CrossRefPubMedGoogle Scholar
  15. Muñoz J, Ruiz S, Soriguer R, Alcaide M, Viana DS, David R, Vázquez A, Figuerola J (2012) Feeding patterns of potential West Nile virus vectors in South-West Spain. PLoS ONE 7:e39549Google Scholar
  16. Palomares F, Godoy JA, Piriz A, O'Brien SJ, Johnson WE (2002) Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian lynx. Mol Ecol 11:2171–2182CrossRefPubMedGoogle Scholar
  17. Palomares F, Godoy JA, López-Bao JV, Rodríguez A, Roques S, Casas-Marce M, Revilla E, Delibes M (2012) Possible extinction vortex for a population of Iberian lynx on the verge of extirpation. Conserv Biol 26:689–697CrossRefPubMedGoogle Scholar
  18. Pérez JM, Sánchez I, Palma RL (2013) The dilemma of conserving parasites: the case of Felicola (Lorisicola) isidoroi (Phthiraptera: Trichodectidae) and its host, the endangered Iberian lynx (Lynx pardinus). Insect Conserv Diver 6:680–686CrossRefGoogle Scholar
  19. Reusken C, De Vries A, Den Hartog W, Braks M, Scholte E-J (2011) A study of the circulation of West Nile virus in mosquitoes in a potential high-risk area for arbovirus circulation in the Netherlands, “De Oostvaardersplassen”. Eur Mosq Bull 29:66–81Google Scholar
  20. Roiz D, Roussel M, Munoz J, Ruiz S, Soriguer R, Figuerola J (2012) Efficacy of mosquito traps for collecting potential West Nile mosquito vectors in a natural mediterranean wetland. Am J Trop Med Hyg 86:642–648CrossRefPubMedCentralPubMedGoogle Scholar
  21. Schaffner E, Angel G, Geoffroy B, Hervy J-P, Rhaiem A, Brunhes J (2001) Les moustiques d’Europe. CD ROM PC. IRD Editions: Logiciel d’identification et d’enseignementGoogle Scholar
  22. Senge T, Madea B, Junge A, Rothschild MA, Schneider PM (2011) STRs, mini STRs and SNPs—a comparative study for typing degraded DNA. Legal Med 13:68–74CrossRefPubMedGoogle Scholar
  23. Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14:323–327CrossRefPubMedGoogle Scholar
  24. Torr SJ, Wilson PJ, Schofield S, Mangwiro TNC, Akber S, White BN (2001) Application of DNA markers to identify the individual-specific hosts of tsetse feeding on cattle. Med Vet Entomol 15:78–86CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Josué Martínez-de la Puente
    • 1
    Email author
  • María Méndez
    • 1
  • Santiago Ruiz
    • 2
  • José A. Godoy
    • 1
  • Ramón C. Soriguer
    • 1
  • Jordi Figuerola
    • 1
  1. 1.Estación Biológica de Doñana (EBD-CSIC)SevilleSpain
  2. 2.Diputación de HuelvaHuelvaSpain

Personalised recommendations