Parasitology Research

, Volume 114, Issue 4, pp 1503–1509 | Cite as

Designing and conducting in silico analysis for identifying of Echinococcus spp. with discrimination of novel haplotypes: an approach to better understanding of parasite taxonomic

  • Adel Spotin
  • Shirzad Gholami
  • Abbas Najafi Nasab
  • Esmaeil Fallah
  • Mahmoud Mahami Oskouei
  • Vahid Semnani
  • Seyyed Ali Shariatzadeh
  • Abbas Shahbazi
Original Paper

Abstract

The definitive identification of Echinococcus species is currently carried out by sequencing and phylogenetic strategies. However, the application of polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) patterns is not broadly used as a result of heterogeneity traits of Echinococcus genome in different regions of the world. Therefore, designing and conducting a standardized pattern should indigenously be considered in under-studied areas. In this investigation, an in silico mapping was designed and developed for eight Echinococcus spp. on the basis of regional sequences in Iran and the world. The numbers of 60 Echinococcus isolates were collected from the liver and lungs of 15 human, 15 sheep, 15 cattle, and 15 camel cases in Semnan province, Central Iran. DNA samples were extracted and examined by polymerase chain reaction of ribosomal DNA (rDNA) internal transcribed spacer 1 (ITS1) and PCR-RFLP via Rsa1 endonuclease enzyme. Moreover, 15 amplicons of cytochrome oxidase 1 (Cox1) were directly sequenced in order to identify the strains/haplotypes. PCR-RFLP and phylogenetic analyses revealed firmly the presence of the G1 and G6 genotypes with heterogeneity (three novel haplotypes) of Cox1 gene although no other expected genotypes were found in the region. Finding shows that the identification of novel haplotypes along with discrimination of Echinococcus spp. through regional patterns can unambiguously illustrate the real taxonomic status of parasite in Central Iran.

Keywords

Echinococcus spp In silico ITS1-rDNA Cox1 G1 G6 

References

  1. Amirmajdi MM, Sankian M, Mashhadi IE, Varasteh A, Vahedi F, Sadrizadeh A, Spotin A (2011) Apoptosis of human lymphocytes after exposure to hydatid fluid. Iran J Parasitol 6:9–16Google Scholar
  2. Alvarez Rojas CA, Romig T, Lightowlers MW (2014) Echinococcus granulosus sensu lato genotypes infecting humans–review of current knowledge. Int J Parasitol 44(1):9–18CrossRefPubMedGoogle Scholar
  3. Bowles J, Blair D, McManus D (1995) A molecular phylogeny of the genus Echinococcus. Parasitology 110:317–328CrossRefPubMedGoogle Scholar
  4. Bowles J, Blair D, McManus D (1992) Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol 54:165–173CrossRefPubMedGoogle Scholar
  5. Bowles J, McManus D (1993) NADH dehydrogenase 1 gene sequences compared for species and strains of the genus Echinococcus. Int J Parasitol 23:969–972CrossRefPubMedGoogle Scholar
  6. Bowles J, McManus D, Donald P (1993a) Molecular variation in Echinococcus. Acta Trop 53:291–305CrossRefPubMedGoogle Scholar
  7. Bowles J, McManus D, Donald P (1993b) Rapid discrimination of Echinococcus species and strains using a polymerase chain reaction-based RFLP method. Mol Biochem Parasitol 57:231–239CrossRefPubMedGoogle Scholar
  8. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9(10):1657–1659CrossRefPubMedGoogle Scholar
  9. Eckert J, Thompson RCA (1997) Intraspecific variation of Echinococcus granulosus and related species with emphasis on their infectivity to humans. Acta Trop 64:19–34CrossRefPubMedGoogle Scholar
  10. Fasihi Harandi M, Hobbs RP, Adams PJ, Mobedi I, Morgan-Ryan UM, Thompson RCA (2002) Molecular and morphological characterization of Echinococcus granulosus of human and animal origin in Iran. Parasitology 125:367–373CrossRefPubMedGoogle Scholar
  11. Gerbi SA (1986) The evolution of eukaryotic ribosomal DNA. BioSystems 19:247–258CrossRefPubMedGoogle Scholar
  12. Gholami S, Sosari M, Fakhar M, Sharif M, Daryani A, Hashemi MB, Vahadi M (2012) Molecular Characterization of Echinococcus granulosus from Hydatid Cysts Isolated from Human and Animals in Golestan Province, North of Iran. Iran J Parasitol 7:8PubMedCentralPubMedGoogle Scholar
  13. Hobbs RP, Lymbery AJ, Thompson RCA (1990) Rostellar hook morphology of Echinococcus granulosus (Batsch, 1786) from natural and experimental Australian hosts, and its implications for strain recognition. Parasitology 101:273–281CrossRefPubMedGoogle Scholar
  14. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267CrossRefPubMedGoogle Scholar
  15. Ito A, Dorjsuren T, Davaasuren A, Yanagida T, Sako Y, Nakaya K, Chuluunbaatar G (2014) Cystic echinococcoses in Mongolia: molecular identification, serology and risk factors. PLoS Negl Trop Dis 8(6):e2937CrossRefPubMedCentralPubMedGoogle Scholar
  16. Jamali R, Ghazanchaei A, Asgharzadeh M (2004) Identification and characterization of Echinococcus granulosus by PCR-RFLP technique in Tabriz district. J Parasit Dis 28:69–72Google Scholar
  17. McManus DP, Bryant C (1995) Biochemistry, physiology and molecular biology of Echinococcus. Echinococcus and hydatid disease. CAB International, Wallingford, pp 135–181Google Scholar
  18. McManus DP, Rishi AK (1989) Genetic heterogeneity within Echinococcus granulosus: isolates from different hosts and geographical areas characterized with DNA probes. Parasitology 99:17–29CrossRefPubMedGoogle Scholar
  19. Nakao M, Yanagida T, Okamoto M, Knapp J, Nkouawa A, SakoY IA (2010) State-of-the-art Echinococcus and Taenia: phylogenetic taxonomy of human-pathogenic tapeworms and its application to molecular diagnosis. Infect Genet Evol 10:444–452CrossRefPubMedGoogle Scholar
  20. Nakao M, Lavikainen A, Yanagida T, Ito A (2013) Phylogenetic systematics of thegenus Echinococcus (Cestoda: Taeniidae). Int J Parasitol 43:1017–1029CrossRefPubMedGoogle Scholar
  21. Okamoto M, Bessho Y, Kamiya M, Kurosawa T, Horii T (1995) Phylogenetic relationships withinTaenia taeniaeformis variants and other taeniid cestodes inferred from the nucleotide sequence of the cytochromec oxidase subunit I gene. Parasitol Res 81:451–458CrossRefPubMedGoogle Scholar
  22. Pour AA, Hosseini SH, Shayan P (2011) Comparative genotyping of Echinococcus granulosus infecting buffalo in Iran using cox1 gene. Parasitol Res 108:1229–1234CrossRefPubMedGoogle Scholar
  23. Rokni MB (2009) Echinococcosis/hydatidosis in Iran. Iran J Parasitol 4:1–16Google Scholar
  24. Rosenzvit MC, Zhang LH, Kamenetzky L, Canova SG, Guarnera EA, McManusDP DP (1999) Genetic variation and epidemiology of Echinococcus granulosus in Argentina. Parasitology 118:523–530CrossRefPubMedGoogle Scholar
  25. Schantz PM, Colli C, Cruz-Reyes A, Prezioso U (1976) sylvatic echinococcosis in Argentina. II. Susceptibility of wild carnivores to Echinococcus granulosus (Batsch, 1786) and host-induced morphological variation. Trop Med Parasitol 27:70–78Google Scholar
  26. Sharafi SM, Rostami nejad M, Moazeni M, Yousefi M, Saneie B, Hosseinisafa A, Yousofi-Darani H (2014) Echinococcus granulosus genotypes in Iran. Gastroenterol Hepatol Bed Bench 7:82PubMedCentralPubMedGoogle Scholar
  27. Sharbatkhori M, Harandi MF, Mirhendi H, Hajialilo E, Kia EB (2011) Sequence analysis of cox1 and nad1 genes in Echinococcus granulosus G3 genotype in camels (Camelus dromedarius) from central Iran. Parasitol Res 108:521–527CrossRefPubMedGoogle Scholar
  28. Smyth JD, McManus DP, Barrett NJ, Bryceson A, Cowie AGA (1980) In vitro culture of human hydatid material. Lancet 1:202–203CrossRefPubMedGoogle Scholar
  29. Spotin A, Majdi MMA, Sankian M, Varasteh A (2012) The study of apoptotic bifunctional effects in relationship between host and parasite in cystic echinococcosis: a new approach to suppression and survival of hydatid cyst. Parasitol Res 110:1979–1984CrossRefPubMedGoogle Scholar
  30. Thompson RCAJ, Jenkins DJ (2014) Echinococcus as a model system: biology and epidemiology. Int J Parasitol 44:865–877CrossRefPubMedGoogle Scholar
  31. Thompson RCA (2013) Parasite zoonoses and wildlife: one health, spillover andhuman activity. Int J Parasitol 43:1079–1088CrossRefPubMedGoogle Scholar
  32. Thompson RCA, Lymbery AJ (1988) The Nature, Extent and Significance of Variation within the Genus Echinococcus. Adv Parasitol 27:209–258CrossRefPubMedGoogle Scholar
  33. Umhang G, Chihai O, Boué F (2014) Molecular characterization of Echinococcus granulosus in a hyperendemic European focus, the Republic of Moldova. Parasitol Res 113(12):4371–4376CrossRefPubMedGoogle Scholar
  34. Van Herwerden L, Gasser RB, Blair D (2000) ITS-1 ribosomal DNA sequence variants are maintained in different species and strains of Echinococcus. Int J Parasitol 30:157–169CrossRefPubMedGoogle Scholar
  35. Villalobos N, González L, Morales J, De Aluja A, Jiménez M, Blanco M, Harrison L, Parkhouse R, Gárate T (2007) Molecular identification ofEchinococcus granulosus genotypes (G1 and G7) isolated from pigs in Mexico. Vet Parasitol 147:185–189CrossRefPubMedGoogle Scholar
  36. Wachira TM, Bowles J, Zeyhle E, McManus DP (1993) Molecular examination of the sympatry and distribution of sheep and camel strains of Echinococcus granulosus in Kenya. Am J Trop Med Hyg 48:473–479PubMedGoogle Scholar
  37. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535CrossRefPubMedCentralPubMedGoogle Scholar
  38. Youssefi MR, Tabaripour R, Omrani VF, Spotin A, Esfandiari B (2013) Genotypic characterization of Echinococcus granulosus in Iranian goats. Asian Pac J Trop Dis 3:362–366CrossRefPubMedCentralGoogle Scholar
  39. Zhang L, Eslami A, Hosseini SH, McManus DP (1998) Indication of the presence of two distinct strains of Echinococcus granulosus in Iran by mitochondrial DNA markers. Am J Trop Med Hyg 59:171–174PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Adel Spotin
    • 1
  • Shirzad Gholami
    • 2
    • 3
  • Abbas Najafi Nasab
    • 4
  • Esmaeil Fallah
    • 4
  • Mahmoud Mahami Oskouei
    • 4
  • Vahid Semnani
    • 5
  • Seyyed Ali Shariatzadeh
    • 4
  • Abbas Shahbazi
    • 1
  1. 1.Immunology Research CenterTabriz University of Medical SciencesTabrizIran
  2. 2.Toxoplasmosis Research CenterMazandaran University of Medical SciencesSariIran
  3. 3.Department of Parasitology & MycologyMazandaran University of Medical SciencesSariIran
  4. 4.Department of Parasitology and Mycology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
  5. 5.Department of PathologySemnan University of Medical SciencesSemnanIran

Personalised recommendations